Although mounting evidence indicates that platelets participate in the modulation of both innate and adaptive immunity, the mechanisms by which platelets exert these effects have not been clearly defined. The study reported herein uses a previously documented adoptive transfer model to investigate the ability of platelet-derived membrane vesicles to communicate activation signals to the B-cell compartment. The findings demonstrate for the first time that platelet-derived membrane vesicles are sufficient to deliver CD154 to stimulate antigen-specific IgG production and modulate germinal center formation through cooperation with responses elicited by CD4(+) T cells. The data are consistent with the hypothesis that platelets modulate inflammation and adaptive immunity at sites distant from the location of activation and that platelet-derived membrane vesicles are sufficient to mediate the effect.
Current thinking suggests that despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1+CD11b+ cells can become suppressive when exposed to inflammatory stimuli. In vitro evaluation shows MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC function enhances T cell responses. However, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T cell responses in vivo has not been directly evaluated. We now demonstrate that during a tissue specific inflammatory response, MDSC inhibition of CD8 T cell proliferation and IFN-γ production is restricted to the inflammatory site. Using a prostate specific inflammatory model and a heterotopic prostate tumor model, we show that MDSC from inflammatory sites or from tumor tissue possess immediate capacity to inhibit T cell function, whereas those isolated from peripheral tissues (spleens and liver) are not suppressive without activation of iNOS by exposure to IFN-γ. These data show MDSC are important regulators of immune responses in the prostate during acute inflammation and the chronic inflammatory setting of tumor growth and that regulation of T cell function by MDSC during a localized inflammatory response is restricted in vivo to the site of an ongoing immune response.
Interleukin-1 (IL-1) is a growth arrest signal for diverse human tumor cell lines. We report here that the action of this cytokine in melanoma cells is associated with induction of EGR-1, a zinc finger protein that activates gene transcription. Both growth arrest and EGR-1 are induced via the type I receptor of IL-1. To determine the role of EGR-1 in IL-1 action in melanoma cells, we used a chimera expressing the transrepression domain of the Wilm's tumor gene, WT1, and the DNA binding domain of Egr-1. This chimera competitively inhibited EGR-1-dependent transactivation via the GC-rich DNA binding sequence, indicating that it acted as a functional dominant negative mutant of Egr-1. Melanoma cell lines stably transfected with the dominant negative mutant construct were supersensitive to IL-1 and showed accelerated G0/G1 growth arrest compared with the parental cell line. The effect of the dominant negative mutant construct was mimicked by addition of an antisense Egr-1 oligomer to the culture medium of the parental cells: the oligomer inhibited EGR-1 expression and accelerated the growth-inhibitory response to IL-1. These data imply that EGR-1 acts to delay IL-1-mediated tumor growth arrest.
Collagen exposure in tissue activates platelets, initiates wound healing, and modulates adaptive immunity. In this report, data are presented to demonstrate a requirement for platelet-derived CD154 for both collagen-induced augmentation of T-cell immunity and induction of protective immunity to Listeria challenge. Specifically, we demonstrate that Ad5 encoding the membrane-bound form of ovalbumin (Ad5-mOVA) delivered in collagen induces higher ovalbumin-specific cytotoxic T lymphocyte (CTL) activity in a dose-dependent manner compared with Ad5-mOVA delivered in PBS. Increased CTL activity was dependent on the ability of platelets to respond to collagen and to express CD154. Furthermore, mice immunized with low-dose Ad5-mOVA in collagen were able to control a challenge of Listeria monocytogenes recombinant for ovalbumin expression (Lm-OVA), whereas mice immunized with low-dose Ad5-mOVA in PBS were not. These data indicate that in a physiologic setting that mimics wounding, platelets perform a sentinel function when antigen dose is too low to provoke an efficient immune response, and can enhance the generation of antigen-specific CD8 T cells that are functionally relevant to the host. IntroductionBecause pathogens are capable of logarithmic expansion upon host infection, it is critical that both innate and adaptive immunity are initiated without delay to ensure survival. An effective adaptive response is dependent upon efficient activation of innate immunity since antigen presenting cells (APCs) that are not fully activated are poor stimulators of T-or B-cell responses. [1][2][3] However, the initial infection usually involves entry of only a few microbes resulting in a very low antigen dose unlikely to provoke a prompt immune response. To compensate, the immune system has been designed with important activating early signaling components such as the Toll-like receptor (TLR) family, and costimulatory molecules such as CD40 ligand (CD40L, CD154), which help lower the threshold for cellular activation. 4,5 CD154 is a molecule critical to adaptive immunity. It is required for T-dependent humoral responses including affinity maturation, somatic hypermutation, germinal center (GC) formation, and B-cell memory. 6 In addition, there is a role in some models for CD154 in generation of normal CD8 T-cell memory and cross-presentation of class I-restricted antigen. [7][8][9][10][11][12][13] Until recently, functionally relevant expression of CD154 was thought to be restricted to CD4 T cells where its purpose in cellular immunity is to stimulate APCs that in turn potently activate T cells 2 ; however, functional CD154, which was able to generate an inflammatory response from endothelial cells, has also been reported on platelets. 14 The role platelets can play in antimicrobial immunity is well documented. They are activated by and able to engulf bacteria and viruses, release antimicrobial and antifungal proteins, release reactive oxygen species, express TLR, protect against helminth infections, and play a role in modulating ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.