Recognition of double-stranded RNA by Toll-like receptor 3 (TLR3) will increase the production of cytokines and chemokines through transcriptional activation by the NF-B protein.Over 136 single-nucleotide polymorphisms (SNPs) in TLR3 have been identified in the human population. Of these, four alter the sequence of the TLR3 protein. Molecular modeling suggests that two of the SNPs, N284I and L412F, could affect the packing of the leucine-rich repeating units in TLR3. Notably, L412F is reported to be present in 20% of the population and is higher in the asthmatic population. To examine whether the four SNPs affect TLR3 function, each were cloned and tested for their ability to activate the expression of TLR3-dependent reporter constructs. SNP N284I was nearly completely defective for activating reporter activity, and L412F was reduced in activity. These two SNPs did not obviously affect the level of TLR3 expression or their intracellular location in vesicles. However, N284I and L412F were underrepresented on the cell surface, as determined by flow cytometry analysis, and were not efficiently secreted into the culture medium when expressed as the soluble ectodomain. They were also reduced in their ability to act in a dominant negative fashion on the wild type TLR3 allele. These observations suggest that N284I and L412F affect the activities of TLR3 needed for proper signaling.
Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.
Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.
Toll-like receptor 3 (TLR3) can signal the production of a suite of cytokines and chemokines in response to double-stranded RNA (dsRNA) ligands or the dsRNA mimic poly(I-C). Using a human embryonic kidney 293T cell line to express human TLR3, we determined that poly(I-C)-induced signal could be significantly inhibited by single-stranded DNAs (ssDNAs), but not ssRNA or dsDNA. The ssDNA molecules that down-modulated TLR3 signaling did not affect TLR4 and do not require the hypomethylated CpG motif found in TLR9 ligands. The degree of modulation can be altered by the length, base sequence, and modification state of the ssDNAs. An inhibitory ssDNA was found to colocalize with TLR3 in transfected cells and in a cell line that naturally expresses TLR3. The inhibitory ssDNAs can compete efficiently with dsRNA for binding purified TLR3 ectodomains in vitro, while noninhibitory nucleic acids do not. The ssDNAs also decrease the levels of several cytokines produced by the human bronchial epithelial cell line BEAS-2B and by human peripheral blood mononuclear cells in response to poly(I-C) stimulation of native TLR3. These activities indicate that ssDNAs could be used to regulate the inflammatory response through TLR3.
Probing chromatin structure with DNA methyltransferases offers advantages over more commonly used nuclease-based and chromatin immunoprecipitation methods for detection of nucleosomes and non-histone protein-DNA interactions. Here we describe two related methods in which the readout of MTase accessibility is obtained by assaying 5-methylcytosine in DNA through the PCR-based technique of bisulfite genomic sequencing. The methyltransferase accessibility protocol (MAP) determines the relative frequency at which the enzyme accesses each of its target sites over an entire population of PCR amplified product. While MAP yields much quantitative information about relative accessibility of a region of chromatin, a complementary singlemolecule view of methyltransferase accessibility, termed MAP for individual templates (MAP-IT), is provided by analysis of cloned PCR products. Absolute rather than relative methylation frequencies in a region are obtained by summing the methylation status at each site over a cohort of clones. Moreover, as the integrity of individual molecules is maintained in MAP-IT, unique information about the distribution of multiple footprints along continuous regions is gleaned. In principle, the population MAP and single-molecule MAP-IT strategies can be used to analyze chromatin structure in a variety of model systems. Here we describe the application of MAP in living S. cerevisiae cells and MAP-IT in the analysis of a mammalian tumor suppressor gene in nuclei. This application of MAP-IT provides the first means to simultaneously determine CpG methylation of mammalian genes and their overlying chromatin structure in the same single DNA molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.