We have undertaken a functional analysis of the odorant receptor repertoire in the Drosophila antenna. Each receptor was expressed in a mutant olfactory receptor neuron (ORN) used as a "decoder," and the odor response spectrum conferred by the receptor was determined in vivo by electrophysiological recordings. The spectra of these receptors were then matched to those of defined ORNs to establish a receptor-to-neuron map. In addition to the odor response spectrum, the receptors dictate the signaling mode, i.e., excitation or inhibition, and the response dynamics of the neuron. An individual receptor can mediate both excitatory and inhibitory responses to different odorants in the same cell, suggesting a model of odorant receptor transduction. Receptors vary widely in their breadth of tuning, and odorants vary widely in the number of receptors they activate. Together, these properties provide a molecular basis for odor coding by the receptor repertoire of an olfactory organ.
Summary We investigate the logic by which sensory input is translated into behavioral output. First we provide a functional analysis of the entire odor receptor repertoire of an olfactory system. We construct tuning curves for the 21 functional odor receptors of the Drosophila larva, and show that they sharpen at lower odor doses. We construct a 21-dimensional odor space from the responses of the receptors and find that the distance between two odors correlates with the extent to which one odor masks the other. Mutational analysis shows that different receptors mediate the responses to different concentrations of an odorant. The summed response of the entire receptor repertoire correlates with the strength of the behavioral response. The activity of a small number of receptors is a surprisingly powerful predictor of behavior. Odors that inhibit more receptors are more likely to be repellents. Odor space is largely conserved between two dissimilar olfactory systems.
We have analyzed the molecular basis of odor coding in the Drosophila larva. A subset of Or genes is found to be expressed in larval olfactory receptor neurons (ORNs). Using an in vivo expression system and electrophysiology, we demonstrate that these genes encode functional odor receptors and determine their response spectra with 27 odors. The receptors vary in their breadth of tuning, exhibit both excitation and inhibition, and show different onset and termination kinetics. An individual receptor appears to transmit signals via a single ORN to a single glomerulus in the larval antennal lobe. We provide a spatial map of odor information in the larval brain and find that ORNs with related functional specificity map to related spatial positions. The results show how one family of receptors underlies odor coding in two markedly different olfactory systems; they also provide a molecular mechanism to explain longstanding observations of larval odor discrimination.
By analogy to mammals, odorant receptors (ORs) in insects, such as Drosophila melanogaster, have long been thought to belong to the G-protein coupled receptor (GPCR) superfamily. However, recent work has cast doubt on this assumption and has tentatively suggested an inverted topology compared to the canonical N out À C in 7 transmembrane (TM) GPCR topology, at least for some Drosophila ORs. Here, we report a detailed topology mapping of the Drosophila OR83b receptor using engineered glycosylation sites as topology markers. Our results are inconsistent with a classical GPCR topology and show that OR83b has an intracellular N-terminus, an extracellular C-terminus, and 7TM helices.
The rules by which odor receptors encode odors and allow behavior are still largely unexplored. Although large data sets of electrophysiological responses of receptors to odors have been generated, few hypotheses have been tested with behavioral assays. We use a data set on odor responses of Drosophila larval odor receptors coupled with chemotaxis behavioral assays to examine rules of odor coding. Using mutants of odor receptors, we have found that odor receptors with similar electrophysiological responses to odors across concentrations play non-redundant roles in odor coding at specific odor concentrations. We have also found that high affinity receptors for odors determine behavioral response thresholds, but the rules for determining peak behavioral responses are more complex. While receptor mutants typically show loss of attraction to odors, some receptor mutants result in increased attraction at specific odor concentrations. The odor receptor mutants were rescued using transgenic expression of odor receptors, validating assignment of phenotypes to the alleles. Vapor pressures alone cannot fully explain behavior in our assay. Finally, some odors that did not elicit strong electrophysiological responses are associated with behavioral phenotypes upon examination of odor receptor mutants. This result is consistent with the role of sensory neurons in lateral inhibition via local interneurons in the antennal lobe. Taken together, our results suggest a complexity of odor coding rules even in a simple olfactory sensory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.