Abstract. In many engineering applications, we have to combine probabilistic and interval uncertainty. For example, in environmental analysis, we observe a pollution level x(t) in a lake at different moments of time t, and we would like to estimate standard statistical characteristics such as mean, variance, autocorrelation, correlation with other measurements. In environmental measurements, we often only measure the values with interval uncertainty. We must therefore modify the existing statistical algorithms to process such interval data.In this paper, we provide a survey of algorithms for computing various statistics under interval uncertainty and their computational complexity. The survey includes both known and new algorithms.
In engineering applications, we need to make decisions under uncertainty. Traditionally, in engineering, statistical methods are used, methods assuming that we know the probability distribution of different uncertain parameters. Usually, we can safely linearize the dependence of the desired quantities y (e.g., stress at different structural points) on the uncertain parameters xi-thus enabling sensitivity analysis. Often, the number n of uncertain parameters is huge, so sensitivity analysis leads to a lot of computation time. To speed up the processing, we propose to use special Monte-Carlo-type simulations.
An important part of our knowledge is in the form of images. For example, a large amount of geophysical and environmental data comes from satellite photos, a large amount of the information stored on the Web is in the form of images, etc. It is therefore desirable to use this image information in data mining. Unfortunately, most existing data mining techniques have been designed for mining numerical data and are thus not well suited for image databases. Hence, new methods are needed for image mining. In this paper, we show how data mining can be used to find common patterns in several images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.