Many wild primates occupy large home ranges and travel long distances each day. Navigating these ranges to find sufficient food presents a substantial cognitive challenge, but we are still far from understanding either how primates represent spatial information mentally or how they use this information to navigate under natural conditions. In the course of a long-term socioecological study, we investigated and compared the travel paths of sympatric spider monkeys (Ateles belzebuth) and woolly monkeys (Lagothrix poeppigii) in Amazonian Ecuador. During several field seasons spanning an 8-year period, we followed focal individuals or groups of both species continuously for periods of multiple days and mapped their travel paths in detail. We found that both primates typically traveled through their home ranges following repeatedly used paths, or "routes". Many of these routes were common to both species and were stable across study years. Several important routes appeared to be associated with distinct topographic features (e.g., ridgetops), which may constitute easily recognized landmarks useful for spatial navigation. The majority of all location records for both species fell along or near identified routes, as did most of the trees used for fruit feeding. Our results provide strong support for the idea that both woolly and spider monkey use route-based mental maps similar to those proposed by Poucet (Psychol Rev 100:163-182, 1993). We suggest that rather than remembering the specific locations of thousands of individual feeding trees and their phenological schedules, spider and woolly monkeys could nonetheless forage efficiently by committing to memory a series of route segments that, when followed, bring them into contact with many potential feeding sources for monitoring or visitation. Furthermore, because swallowed and defecated seeds are deposited in greater frequency along routes, the repeated use of particular travel paths over generations could profoundly influence the structure and composition of tropical forests, raising the intriguing possibility that these and other primate frugivores are active participants in constructing their own ecological niches. Building upon the insights of Byrne (Q J Exp Psychol 31:147-154, 1979, Normality and pathology in cognitive functions. Academic, London, pp 239-264, 1982) and Milton (The foraging strategy of howler monkeys: a study in primate economics. Columbia University Press, New York, 1980, On the move: how and why animals travel in groups. University of Chicago Press, Chicago, pp 375-417, 2000), our results highlight the likely general importance of route-based travel in the memory and foraging strategies of nonhuman primates.
Investigations of coevolutionary relationships between plants and the animals that disperse their seeds suggest that disperser-plant interactions are likely shaped by diffuse, rather than species-to-species, coevolution. We studied the role of dietary plasticity in shaping the potential for diffuse coevolution by comparing dietary fruit preferences and seed dispersal by 3 species of spider monkeys (Ateles spp.) in 4 moist forests in Colombia, Ecuador, Panama, and Surinam. In all forests, spider monkeys were highly frugivorous and preyed upon seeds of few species. We estimated dietary use of fruiting taxa based on absolute consumption and preference, which accounts for resource availability. Of the 59 genera that comprised the 20 most frequently consumed genera summed in each forest, only 3-Brosimum (Moraceae), Cecropia (Cecropiaceae) and Virola (Myristicaceae)-ranked within the top 20 at every forest. Most genera were within the 20 most frequently consumed at only 1 or 2 forests. Based on preferences, only 4 genera ranked in the 20 most-preferred in all 4 forests: Brosimum, Cecropia, Ficus (Moracae), and Virola. Patterns in fruit consumption and preference at the familial level were similar in that only 2 families-Myristicaceae and Moraceae-were in the 10 most-consumed or most-preferred in all 4 forests. Interforest variation in plant specific composition and abundances and supra-annual fruiting phenologies, combined with dietary flexibility of Ateles spp., may partly explain these patterns. Our results suggest that variation in plant community structure strongly influences dietary preferences, and hence, seed dispersal by spider monkeys. Thus, diffuse coevolution in spider monkey-plant relationships may be limited to few taxa at the generic and familial levels.
Spider monkeys (Ateles spp.) are well known for their highly arboreal lifestyle, spending much of their time in the highest levels of the canopy and rarely venturing to the ground. To investigate terrestriality by Ateles and to illuminate the conditions under which spider monkeys venture to the ground, we analyzed ad libitum data from 5 study sites, covering 2 species and 5 subspecies. belzebuth).Terrestrialism by Ateles at all sites is rare; however, it is more restricted at the 2 South American sites. In South America, ground use only occurred in the contexts of eating soil or rotten wood and visiting salt licks. In contrast at the 3 sites with Ateles geoffroyi it rarely occurred in a feeding context, but instead more frequently while drinking from streams during the dry season, by adult females escaping attack by adult males, and as part of a chase C a m p b e l l e t a l . i n I n t e r n a t I o n a l J o u r n a l o f P r I m a t o l o g y 2 6 ( 2 0 0 5 ) 1040 game. In addition, on BCI adult males were on the ground before attacking adult females. We discuss potential explanations, e.g., climate, species differences, predation pressure, for the differences between the Central/North and South American observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.