We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E. coli ribosomal proteins with HCD fragmentation. With one injection, all but two ribosomal proteins were selected for fragmentation and subsequently identified. The techniques described facilitate rapid identification of intact proteins in complex mixtures and an enhanced ability to observe proteins of low abundance.
Chromatin is the structural framework that packages DNA into chromosomes within the nucleus of a cell (2). Histones comprise the principal protein component of chromatin and are involved in the regulation of gene expression (3,4). This epigenetic regulation is achieved through complex patterns of post-translational modifications (PTMs), 1 the incorporation of histone variants, and through controlled histone proteolysis (5-10). Comprehensive characterization of histones by mass spectrometry (MS) has proven technically difficult for a number of reasons. Traditional methods (bottom-up MS) of sequence determination and PTM site localization are not practical. Histone N-terminal regions are rich in lysine and arginine residues, and thus proteolysis using trypsin generates peptides that are too small or that are poorly retained on reversephase HPLC C18 resins for subsequent MS detection (11). With the advent of electron transfer dissociation (ETD) and more efficient electron capture dissociation fragmentation methods, which are better suited for larger, more highly charged peptides (12, 13), several studies utilizing other endoproteases to generate longer peptides have emerged (14 -16). Although these methodologies do well to preserve the combinatorial PTM profiles of histone tails, in some cases it is still impossible to identify the proteoforms from which these peptides originate. This is why analyzing histones intact, as they exist in the cells from which they are derived, is the best method for identifying unique histone proteoforms.The results of several recent studies involving top-down analyses of histones highlight the complexity of the histone From the ‡Department
Methodology for sequence analysis of ϳ150 kDa monoclonal antibodies (mAb), including location of post-translational modifications and disulfide bonds, is described. Limited digestion of fully denatured (reduced and alkylated) antibody was accomplished in seconds by flowing a sample in 8 M urea at a controlled flow rate through a micro column reactor containing immobilized aspergillopepsin I. The resulting product mixture containing 3-9 kDa peptides was then fractionated by capillary column liquid chromatography and analyzed on-line by both electron-transfer dissociation and collisionally activated dissociation mass spectrometry (MS). This approach enabled identification of peptides that cover the complete sequence of a murine mAb. With customized tandem MS and ProSightPC Biomarker search, we verified 95% amino acid residues of this mAb and identified numerous posttranslational modifications (oxidized methionine, pyroglutamylation, deamidation of Asn, and several forms of Nlinked glycosylation). For disulfide bond location, native mAb is subjected to the same procedure but with longer digestion times controlled by sample flow rate through the micro column reactor. Release of disulfide containing peptides from accessible regions of the folded antibody occurs with short digestion times. Release of those in the interior of the molecule requires longer digestion times. The identity of two peptides connected by a disulfide bond is determined using a combination of electron-transfer dissociation and ion-ion proton transfer chemistry to read the two N-terminal and two C-terminal sequences of the connected peptides. Molecular & Cellular Proteomics
Mass spectrometry (MS) is the primary analytical tool used to characterize proteins within the biopharmaceutical industry. Electrospray ionization (ESI) coupled to liquid chromatography (LC) is the current gold standard for intact protein analysis. However, inherent speed limitations of LC/MS prevent analysis of large sample numbers (>1000) in a day. Infrared matrixassisted laser desorption electrospray ionization (IR-MALDESI-MS), an ambient ionization MS technology, has recently been established as a platform for high-throughput small molecule analysis. Here, we report the applications of such a system for the analysis of intact proteins commonly performed within the drug discovery process. A wide molecular weight range of proteins 10− 150 kDa was detected on the system with improved tolerance to salts and buffers compared to ESI. With high concentrations and model proteins, a sample rate of up to 22 Hz was obtained. For proteins at low concentrations and in buffers used in commonly employed assays, robust data at a sample rate of 1.5 Hz were achieved, which is ∼22× faster than current technologies used for highthroughput ESI-MS-based protein assays. In addition, two multiplexed plate-based high-throughput sample cleanup methods were coupled to IR-MALDESI-MS to enable analysis of samples containing excessive amounts of salts and buffers without fully compromising productivity. Example experiments, which leverage the speed of the IR-MALDESI-MS system to monitor NISTmAb reduction, protein autophosphorylation, and compound binding kinetics in near real time, are demonstrated.
Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.