Cortactin is a c-src substrate associated with sites of dynamic actin assembly at the leading edge of migrating cells. We previously showed that cortactin binds to Arp2/3 complex, the essential molecular machine for nucleating actin filament assembly. In this study, we demonstrate that cortactin activates Arp2/3 complex based on direct visualization of filament networks and pyrene actin assays. Strikingly, cortactin potently inhibited the debranching of filament networks. When cortactin was added in combination with the active VCA fragment of N-WASp, they synergistically enhanced Arp2/3-induced actin filament branching. The N-terminal acidic and F-actin binding domains of cortactin were both necessary to activate Arp2/3 complex. These results support a model in which cortactin modulates actin filament dendritic nucleation by two mechanisms, (1) direct activation of Arp2/3 complex and (2) stabilization of newly generated filament branch points. By these mechanisms, cortactin may promote the formation and stabilization of the actin network that drives protrusion at the leading edge of migrating cells.
Engagement of integrin receptors with extracellular ligands gives rise to the formation of complex multiprotein structures that link the ECM to the cytoplasmic actin cytoskeleton. These adhesive complexes are dynamic, often heterogeneous structures, varying in size and organization. In motile cells, sites of adhesion within ®lopodia and lamellipodia are relatively small and transient and are referred to as`focal complexes,' whereas adhesions underlying the body of the cell and localized to the ends of actin stress ®bers are referred to as`focal adhesions'. Signal transduction through focal complexes and focal adhesions has been implicated in the regulation of a number of key cellular processes, including growth factor induced mitogenic signals, cell survival and cell locomotion. The formation and remodeling of focal contacts is a dynamic process under the regulation of protein tyrosine kinases and small GTPases of the Rho family. In this review, we consider the role of the focal complex associated protein tyrosine kinase, Focal Adhesion Kinase (FAK), in the regulation of cell movement with the emphasis on how FAK regulates the¯ow of signals from the ECM to the actin cytoskeleton. Oncogene (2000) 19, 5606 ± 5613.
Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain–containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes.
Exposure of cells to a variety of external signals causes rapid changes in plasma membrane morphology. Plasma membrane dynamics, including membrane ru e and microspike formation, fusion or ®ssion of intracellular vesicles, and the spatial organization of transmembrane proteins, is directly controlled by the dynamic reorganization of the underlying actin cytoskeleton. Two members of the Rho family of small GTPases, Cdc42 and Rac, have been well established as mediators of extracellular signaling events that impact cortical actin organization. Actin-based signaling through Cdc42 and Rac ultimately results in activation of the actin-related protein (Arp) 2/3 complex, which promotes the formation of branched actin networks. In addition, the activity of both receptor and non-receptor protein tyrosine kinases along with numerous actin binding proteins works in concert with Arp2/3-mediated actin polymerization in regulating the formation of dynamic cortical actin-associated structures. In this review we discuss the structure and role of the cortical actin binding protein cortactin in Rho GTPase and tyrosine kinase signaling events, with the emphasis on the roles cortactin plays in tyrosine phosphorylation-based signal transduction, regulating cortical actin assembly, transmembrane receptor organization and membrane dynamics. We also consider how aberrant regulation of cortactin levels contributes to tumor cell invasion and metastasis. Oncogene (2001) 20, 6418 ± 6434.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.