Pathological hyperphosphorylation of the microtubule-associated protein tau is characteristic of Alzheimer's disease (AD) and the associated tauopathies. The reciprocal relationship between phosphorylation and O-GlcNAc modification of tau and reductions in O-GlcNAc levels on tau in AD brain offers motivation for the generation of potent and selective inhibitors that can effectively enhance O-GlcNAc in vertebrate brain. We describe the rational design and synthesis of such an inhibitor (thiamet-G, K(i) = 21 nM; 1) of human O-GlcNAcase. Thiamet-G decreased phosphorylation of tau in PC-12 cells at pathologically relevant sites including Thr231 and Ser396. Thiamet-G also efficiently reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus, which reveals the rapid and dynamic relationship between O-GlcNAc and phosphorylation of tau in vivo. We anticipate that thiamet-G will find wide use in probing the functional role of O-GlcNAc in vertebrate brain, and it may also offer a route to blocking pathological hyperphosphorylation of tau in AD.
Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.
Adult neural stem cells (NSCs) derive from embryonic precursors, but little is known about how or when this occurs. We have addressed this issue using single-cell RNA sequencing at multiple developmental time points to analyze the embryonic murine cortex, one source of adult forebrain NSCs. We computationally identify all major cortical cell types, including the embryonic radial precursors (RPs) that generate adult NSCs. We define the initial emergence of RPs from neuroepithelial stem cells at E11.5. We show that, by E13.5, RPs express a transcriptional identity that is maintained and reinforced throughout their transition to a non-proliferative state between E15.5 and E17.5. These slowly proliferating late embryonic RPs share a core transcriptional phenotype with quiescent adult forebrain NSCs. Together, these findings support a model wherein cortical RPs maintain a core transcriptional identity from embryogenesis through to adulthood and wherein the transition to a quiescent adult NSC occurs during late neurogenesis.
Adult mammals have lost multi-tissue regenerative capacity, except for the distal digit, which is able to regenerate via mechanisms that remain largely unknown. Here, we show that, after adult mouse distal digit removal, nerve-associated Schwann cell precursors (SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. When SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased and nail and bone regeneration were impaired. Transplantation of exogenous SCPs rescued these regeneration defects. We found that SCPs secrete factors that promote self-renewal of mesenchymal precursors, and we used transcriptomic and proteomic analysis to define candidate factors. Two of these, oncostatin M (OSM) and platelet-derived growth factor AA (PDGF-AA), are made by SCPs in the regenerating digit and rescued the deficits in regeneration caused by loss of SCPs. As all peripheral tissues contain nerves, these results could have broad implications for mammalian tissue repair and regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.