the efficiency of transfection. In light of the fact that ECs are difficult to transfect, the success of this method is warranted for a wider range of cells with different origins. In fact, we have obtained similar results in temporally transfecting NIH 3T3 cells using this method (data not shown). In addition, this method of temporal transfection might have utility in reversing cellular abnormalities through genetic intervention of the temporally introduced gene.
The pre-cellular Drosophila embryo contains 10 well characterized sequence-specific transcriptional repressors, which represent a broad spectrum of DNAbinding proteins. Previous studies have shown that two of the repressors, Hairy and Dorsal, recruit a common co-repressor protein, Groucho. Here we present evidence that three different repressors, Knirps, Krü ppel and Snail, recruit a different co-repressor, dCtBP. Mutant embryos containing diminished levels of maternal dCtBP products exhibit both segmentation and dorsoventral patterning defects, which can be attributed to loss of Krü ppel, Knirps and Snail activity. In contrast, the Dorsal and Hairy repressors retain at least some activity in dCtBP mutant embryos. dCtBP interacts with Krü ppel, Knirps and Snail through a related sequence motif, PXDLSXK/H. This motif is essential for the repression activity of these proteins in transgenic embryos. We propose that dCtBP represents a major form of transcriptional repression in development, and that the Groucho and dCtBP co-repressors mediate separate pathways of repression.
The DNA-binding transcription factor Suppressor of Hairless [Su(H)] functions as an activator during Notch (N) pathway signaling, but can act as a repressor in the absence of signaling. Hairless (H), a novel Drosophila protein, binds to Su(H) and has been proposed to antagonize N signaling by inhibiting DNA binding by Su(H). Here we show that, in vitro, H directly binds two corepressor proteins, Groucho (Gro) and dCtBP. Reduction of gro or dCtBP function enhances H mutant phenotypes and suppresses N phenotypes in the adult mechanosensory bristle. This activity of gro is surprising, because it is directed oppositely to its traditionally defined role as a neurogenic gene. We find that Su(H)-H complexes can bind to DNA with high efficiency in vitro. Furthermore, a H-VP16 fusion protein causes dominant-negative phenotypes in vivo, a result consistent with the proposal that H functions in transcriptional repression. Taken together, our findings indicate that "default repression" of N pathway target genes by an unusual adaptor/corepressor complex is essential for proper cell fate specification during Drosophila peripheral nervous system development.
Gradients of diffusible signaling proteins control precise spatial patterns of gene expression in the developing embryo. Here, we use quantitative expression measurements and thermodynamic modeling to uncover the cis-regulatory logic underlying spatially restricted gene expression in a Hedgehog (Hh) gradient in Drosophila. When Hh signaling is low, the Hh effector Gli, known as Cubitus interruptus (Ci) in Drosophila, acts as a transcriptional repressor; when Hh signaling is high, Gli acts as a transcriptional activator. Counterintuitively and in contrast to previous models of Gli-regulated gene expression, we found that low-affinity binding sites for Ci were required for proper spatial expression of the Hh target gene decapentaplegic (dpp) in regions of low Hh signal. Three low-affinity Ci sites enabled expression of dpp in response to low signal; increasing the affinity of these sites restricted dpp expression to regions of maximal signaling. A model incorporating cooperative repression by Ci correctly predicted the in vivo expression of a reporter gene controlled by a single Ci site. Our work clarifies how transcriptional activators and repressors, competing for common binding sites, can transmit positional information to the genome. It also provides an explanation for the widespread presence of conserved, nonconsensus Gli binding sites in Hh target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.