High-milk-protein concentrates (>80% on a dry weight basis) are typically produced by ultrafiltration (UF) with constant-volume diafiltration (DF). To maximize protein retention at a commercial scale, polymeric spiral-wound UF membranes with a molecular weight cut-off (MWCO) of 10 kDa are commonly used. Flux decline and membrane fouling during UF have been studied extensively and the selection of an optimal UF-DF sequence is expected to have a considerable effect on both the process efficiency and the volumes of by-products generated. The objective of this study was to characterize the performance of the UF-DF process by evaluating permeate flux decline, fouling resistance, energy and water consumption, and retentate composition as a function of MWCO (10 and 50 kDa) and UF-DF sequence [3.5×-2 diavolumes (DV) and 5×-0.8DV]. The UF-DF experiments were performed on pasteurized skim milk using a pilot-scale filtration system operated at 50°C under a constant transmembrane pressure of 465 kPa. The results showed that MWCO had no effect on permeate flux for the same UF-DF sequence. Irreversible resistance was also similar for both sequences, whatever the MWCO, suggesting that soluble protein deposition within the pores is similar for all conditions. Despite lower permeate fluxes and greater reversible resistance for the 5×-0.8DV sequence, the overall energy consumption of the 2 UF-DF sequences was similar. However, the 3.5×-2DV sequence required more water for DF and generated larger volumes of permeate to be processed, which will require more membrane area and lead to greater environmental impact. A comparative life cycle assessment should however be performed to confirm which sequence has the lowest environmental impact.
The efficiency of the ultrafiltration process during skim milk concentration was studied using both dynamic and constant (465 or 672kPa) transmembrane pressure experiments at refrigerated temperature (10°C) and high temperature (50°C). The pilot-scale module was equipped with a 10-kDa polyethersulfone spiral-wound membrane element with a surface area of 2.04m. Permeation flux, resistance-in-series model, mineral and protein rejection, and energy consumption were studied as a function of temperature and transmembrane pressure applied. Higher permeation flux values were systematically obtained at 50°C. Also, a significant temperature effect was found for calcium rejection, which was lower at 10°C compared with 50°C. Total hydraulic resistance and reversible fouling resistance were higher at 50°C than at 10°C. No change in protein rejection was observed, depending on the operating mode studied. Permeation flux, which was higher at 50°C, had lower pumping energy consumption compared with ultrafiltration at the colder temperature. Also, the low ultrafiltration temperature required a higher total energy consumption to reach the 3.6× retentate compared with ultrafiltration at 50°C. Overall, our study shows that the operating parameters and temperature can be optimized using an energy efficiency ratio.
Microfiltration is largely used to separate casein micelles from milk serum proteins (SP) to produce a casein-enriched retentate for cheese making and a permeate enriched in native SP. Skim milk microfiltration is typically performed with ceramic membranes and little information is available about the efficiency of spiral-wound (SW) membranes. We determined the effect of SW membrane pore size (0.1 and 0.2 µm) on milk protein separation in total recirculation mode with a transmembrane pressure gradient to evaluate the separation efficiency of milk proteins and energy consumption after repeated concentration and diafiltration (DF). Results obtained in total recirculation mode demonstrated that pore size diameter had no effect on the permeate flux, but a drastic loss of casein was observed in permeate for the 0.2-µm SW membrane. Concentration-DF experiments (concentration factor of 3.0× with 2 sequential DF) were performed with the optimal 0.1-µm SW membrane. We compared these results to previous data we generated with the 0.1-µm graded permeability (GP) membrane. Whereas casein rejection was similar for both membranes, SP rejection was higher for the 0.1-µm SW membrane (rejection coefficient of 0.75 to 0.79 for the 0.1-µm SW membrane versus 0.46 to 0.49 for the GP membrane). The 0.1-µm SW membrane consumed less energy (0.015-0.024 kWh/kg of permeate collected) than the GP membrane (0.077-0.143 kWh/kg of permeate collected). A techno-economic evaluation led us to conclude that the 0.1-µm SW membranes may represent a better option to concentrate casein for cheese milk; however, the GP membrane has greater permeability and its longer lifetime (about 10 yr) potentially makes it an interesting option.
Ultrafiltration (UF) and microfiltration (MF) are widely-used technologies to standardize the protein content of cheesemilk. Our previous work demonstrated that protein retention of a 0.1-µm MF spiral-wound membrane (SWM) was lower, but close to that of a 10 kDa UF one. Considering that the permeability of MF membranes is expected to be higher than that of UF ones, it was hypothesized that the former could improve the efficiency of the cheesemaking process. Consequently, the objectives of this work were to compare 0.1-µm MF and 10 kDa UF spiral-wound membranes in terms of (1) hydraulic and separation performance, (2) energy consumption and fouling behavior, (3) cheesemaking efficiency of retentates enriched with cream, and (4) economic performance in virtual cheesemaking plants. This study confirmed the benefits of using MF spiral-wound membranes to reduce the specific energy consumption of the filtration process (lower hydraulic resistance and higher membrane permeability) and to enhance the technological performance of the cheesemaking process (higher vat yield, and protein and fat recoveries). However, considering the higher serum protein retention of the UF membrane and the low price of electricity in Canada, the UF scenario remained more profitable. It only becomes more efficient to substitute the 10 kDa UF SWM by the 0.1-μm MF when energy costs are substantially higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.