Neutrophil migration to the site of bacterial infection is a critical step in host defense. Exclusively produced in the bone marrow, neutrophil release into the blood is tightly controlled. Although the chemokine CXCL1 induces neutrophil influx during bacterial infections, its role in regulating neutrophil recruitment, granulopoiesis, and neutrophil mobilization in response to lung infection-induced sepsis is unclear. Here, we used a murine model of intrapulmonary Streptococcus pneumoniae infection to investigate the role of CXCL1 in host defense, granulopoiesis, and neutrophil mobilization. Our results demonstrate that CXCL1 augments neutrophil influx to control bacterial growth in the lungs, as well as bacterial dissemination, resulting in improved host survival. This was shown in Cxcl1−/− mice, which exhibited defective amplification of early neutrophil precursors in granulocytic compartments, and CD62L- and CD49d-dependent neutrophil release from the marrow. Administration of recombinant CXCL2 and CXCL5 after infection rescues the impairments in neutrophil-dependent host defense in Cxcl1−/− mice. Taken together, these findings identify CXCL1 as a central player in host defense, granulopoiesis, and mobilization of neutrophils during Gram-positive bacterial pneumonia-induced sepsis.
Neurotropism is a defining characteristic of alphaherpesvirus pathogenicity. Glycoprotein K (gK) is a conserved virion glycoprotein of all alphaherpesviruses that is not found in other herpesvirus subfamilies. The extracellular amino terminus of gK has been shown to be important to the ability of the prototypic alphaherpesvirus herpes simplex virus 1 (HSV-1) to enter neurons via axonal termini. Here, we determined the role of the two conserved N-linked glycosylation (N48 and N58) sites of gK in virus-induced cell fusion and replication. We found that N-linked glycosylation is important to the regulation of HSV-1-induced membrane fusion since mutating N58 to alanine (N58A) caused extensive virus-induced cell fusion. Due to the known contributions of N-linked glycosylation to protein processing and correct disulfide bond formation, we investigated whether the conserved extracellular cysteine residues within the amino terminus of gK contributed to the regulation of HSV-1-induced membrane fusion. We found that mutation of C37 and C114 residues led to a gK-null phenotype characterized by very small plaque formation and drastic reduction in infectious virus production, while mutation of C82 and C243 caused extensive virus-induced cell fusion. Comparison of N-linked glycosylation and cysteine mutant replication kinetics identified disparate effects on infectious virion egress from infected cells. Specifically, cysteine mutations caused defects in the accumulation of infectious virus in both the cellular and supernatant fractions, while glycosylation site mutants did not adversely affect virion egress from infected cells. These results demonstrate a critical role for the N glycosylation sites and cysteines for the structure and function of the amino terminus of gK. We have previously identified important entry and neurotropic determinants in the amino terminus of HSV-1 glycoprotein K (gK). Alphaherpesvirus-mediated membrane fusion is a complex and highly regulated process that is not clearly understood. gK and UL20, which are highly conserved across all alphaherpesviruses, play important roles in the regulation of HSV-1 fusion in the context of infection. A greater understanding of mechanisms governing alphaherpesvirus membrane fusion is expected to inform the rational design of therapeutic and prevention strategies to combat herpesviral infection and pathogenesis. This work adds to the growing reports regarding the importance of gK to alphaherpesvirus pathogenesis and details important structural features of gK that are involved in gK-mediated regulation of virus-induced membrane fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.