The Naval Postgraduate School (NPS) Remote Sensing Center (RSC) and research partners have completed a remote sensing pilot project in support of California post-earthquake-event emergency response. The project goals were to dovetail emergency management requirements with remote sensing capabilities to develop prototype map products for improved earthquake response. NPS coordinated with emergency management services and first responders to compile information about essential elements of information (EEI) requirements. A wide variety of remote sensing datasets including multispectral imagery (MSI), hyperspectral imagery (HSI), and LiDAR were assembled by NPS for the purpose of building imagery baseline data; and to demonstrate the use of remote sensing to derive ground surface information for use in planning, conducting, and monitoring post-earthquake emergency response. Worldview-2 data were converted to reflectance, orthorectified, and mosaicked for most of Monterey County; CA. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired at two spatial resolutions were atmospherically corrected and analyzed in conjunction with the MSI data. LiDAR data at point densities from 1.4 pts/ m 2 to over 40 points/ m 2 were analyzed to determine digital surface models. The multimodal data were then used to develop change detection approaches and products and other supporting information. Analysis results from these data along with other geographic information were used to identify and generate multi-tiered products tied to the level of post-event communications infrastructure (internet access + cell, cell only, no internet/cell). Technology transfer of these capabilities to local and state emergency response organizations gives emergency responders new tools in support of post-disaster operational scenarios.
Full-waveform LiDAR data from an AHAB Chiroptera I system with 515 nm and 1032 nm lasers (∼10 pts/m 2 ), single-photon sensitive data from the Sigma Space HRQLS system with a 532 nm laser (∼19 pts/m 2 ), and discrete analog data from an Optech Orion C200 system (∼88 pts/m 2 ) were collected from aerial platforms over Monterey, CA, USA in fall 2012 and fall 2013. The study area contains residential neighborhoods, forested regions, inland lakes, and the Pacific Ocean near-shore environment. Significant ground truth in the form of GPS measurements and terrestrial LiDAR scans enable the LiDAR data to be compared in terms of measurement precision and degree of tree canopy penetration, as well as comparisons of derived raster products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.