The rapid chemical analysis of individual cells is an analytical capability that will profoundly impact many fields including bioaerosol detection for biodefense and cellular diagnostics for clinical medicine. This article describes a mass spectrometry-based analytical technique for the real-time and reagentless characterization of individual airborne cells without sample preparation. We characterize the mass spectral signature of individual Bacillus spores and demonstrate the ability to distinguish two Bacillus spore species, B. thuringiensis and B.atrophaeus, from one another very accurately and from the other biological and nonbiological background materials tested with no false positives at a sensitivity of 92%. This example demonstrates that the chemical differences between these two Bacillus spore species are consistently and easily detected within single cells in seconds.
Oligosaccharides are known to play important roles in many biological processes. In the study of oligosaccharides, collision-induced dissociation (CID) is the most common dissociation method to elucidate the sequence and connectivity. However, a disadvantage of CID is the decrease in both the degree and efficiency of dissociation with increasing mass. In the present study, we have successfully performed infrared multiphoton dissociation (IRMPD) on 39 O-linked mucin-type oligosaccharide alditols (both neutral and anionic). CID and IRMPD spectra of several oligosaccharides were also compared. They yielded nearly identical fragment ions corresponding to the lowest energy fragmentation pathways. The characteristic fragmentations of structural motifs, which can provide the linkage information, were similarly presented in both CID and IRMPD spectra. Multistage of CID (MS(3) or MS(4)) is commonly needed to completely sequence the oligosaccharides, while IRMPD of the same compounds yielded the fragment ions corresponding to the loss of the first residue to the last residue during a single-stage tandem MS (MS(2)). Finally, it is shown that the fragmentation efficiency of IRMPD increases with the increasing size of oligosaccharides.
Bioaerosol mass spectrometry is being developed to analyze and identify biological aerosols in real time. Characteristic mass spectra from individual bacterial endospores of Bacillus subtilis var. niger were obtained in a bipolar aerosol time-of-flight mass spectrometer using a pulsed 266-nm laser for molecular desorption and ionization. Spectra from single spores collected at an average fluence of approximately 0.1 J/cm2 frequently contain prominent peaks attributed to arginine, dipicolinic acid, and glutamic acid, but the shot-to-shot (spore-to-spore) variability in the data may make it difficult to consistently distinguish closely related Bacillus species with an automated routine. Fortunately, a study of the laser power dependence of the mass spectra reveals clear trends and a finite number of "spectral types" that span most of the variability. This, we will show, indicates that a significant fraction of the variability must be attributed to fluence variations in the profile of the laser beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.