Reciprocal interactions between the metabolic system and immune cells play pivotal roles in diverse inflammatory diseases, but the underlying mechanisms remain elusive. The activation of bile acid-mediated signaling has been linked to improvement in metabolic syndromes and enhanced control of inflammation. Here, we demonstrated that bile acids inhibited NLRP3 inflammasome activation via the TGR5-cAMP-PKA axis. TGR5 bile acid receptor-induced PKA kinase activation led to the ubiquitination of NLRP3, which was associated with the PKA-induced phosphorylation of NLRP3 on a single residue, Ser 291. Furthermore, this PKA-induced phosphorylation of NLRP3 served as a critical brake on NLRP3 inflammasome activation. In addition, in vivo results indicated that bile acids and TGR5 activation blocked NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation, alum-induced peritoneal inflammation, and type-2 diabetes-related inflammation. Altogether, our study unveils the PKA-induced phosphorylation and ubiquitination of NLRP3 and suggests TGR5 as a potential target for the treatment of NLRP3 inflammasome-related diseases.
Oligosaccharides in human milk represent a group of bioactive molecules that have evolved to be an abundant and diverse component of human milk, even though they have no direct nutritive value to the infant. A recent hypothesis proposes that they could be substrates for the development of the intestinal microflora and the mucosal immune system. The inability to determine the exact composition of these oligosaccharides limits research and the ability to understand their biological functions. Oligosaccharides isolated from the lipids and proteins of individual human milk samples were analyzed by a combination of techniques including microchip liquid chromatography mass spectrometry (HPLC-Chip/MS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT ICR MS). Accurate mass measurements obtained using an orthogonal time-of-flight (o-TOF) mass spectrometry provided oligosaccharide composition for approximately 200 individual molecular species. Comparison of HPLC-Chip/MS profiles from five different women revealed variations in milk oligosaccharide compositions. HPLC-Chip/MS profiling provides a method for routinely identifying milk oligosaccharides. Tandem MS in combination with exoglycosidase digestion provides unambiguous differentiation of structural isomers.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.