To examine effects of aging and endurance training on human muscle metabolism during exercise, 31P magnetic resonance spectroscopy was used to study the metabolic response to exercise in young (21-33 yr) and older (58-68 yr) untrained and endurance-trained men (n = 6/group). Subjects performed graded plantar flexion exercise with the right leg, with metabolic responses measured using a 31P surface coil placed over the lateral head of the gastrocnemius muscle. Muscle biopsy samples were also obtained for determination of citrate synthase activity. Rate of increase in P(i)-to-phosphocreatine ratio with increasing power output was greater (P < 0.01) in older untrained [0.058 +/- 0.022 (SD) W-1] and trained men (0.042 +/- 0.010 W-1) than in young untrained (0.038 +/- 0.017 W-1) and trained men (0.024 +/- 0.010 W-1). Plantar flexor muscle cross-sectional area and volume (determined using 1H magnetic resonance imaging) were 11-12% (P < 0.05) and 16-18% (P < 0.01) smaller, respectively, in older men. When corrected for this difference in muscle mass, age-related differences in metabolic response to exercise were reduced by approximately 50% but remained significant (P < 0.05). Citrate synthase activity was approximately 20% lower (P < 0.001) in older untrained and trained men than in corresponding young groups and was inversely related to P(i)-phosphocreatine slope (r = -0.63, P < 0.001). Age-related reductions in exercise capacity were associated with an altered muscle metabolic response to exercise, which appeared to be due to smaller muscle mass and lower muscle respiratory capacity of older subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
We have previously shown that 12 wk of endurance training reduces the rate of glucose appearance (Ra) during submaximal exercise (Coggan, A. R., W. M. Kohrt, R. J. Spina, D. M. Bier, and J. O. Holloszy. J. Appl. Physiol. 68: 990-996, 1990). The purpose of the present study was to examine the time course of and relationship between training-induced alterations in glucose kinetics and endocrine responses during prolonged exercise. Accordingly, seven men were studied during 2 h of cycle ergometer exercise at approximately 60% of pretraining peak oxygen uptake on three occasions: before, after 10 days, and after 12 wk of endurance training. Ra was determined using a primed, continuous infusion of [6,6-2H]glucose. Ten days of training reduced mean Ra during exercise from 36.9 +/- 3.3 (SE) to 28.5 +/- 3.4 mumol.min-1.kg-1 (P < 0.001). Exercise-induced changes in insulin, C-peptide, glucagon, norepinephrine, and epinephrine were also significantly blunted. After 12 wk of training, Ra during exercise was further reduced to 21.5 +/- 3.1 mumol.min-1.kg-1 (P < 0.001 vs. 10 days), but hormone concentrations were not significantly different from 10-day values. The lower glucose Ra during exercise after short-term (10 days) training is accompanied by, and may be due to, altered plasma concentrations of the major glucoregulatory hormones. However, other adaptations must be responsible for the further reduction in Ra with more prolonged training.
In humans, endurance training markedly reduces the rate of hepatic glucose production during exercise. To determine whether this is due to a reduction in glycogenolysis, in gluconeogenesis, or in both processes, six men were studied at rest and during 2 h of cycle ergometer exercise at 60% pretraining peak O2 consumption (VO2peak), both before and after completion of a strenuous endurance training program (cycling at 75-100% VO2peak for 45-90 min/day, 6 days/wk for 12 wk). The overall rate of glucose appearance (Ra) was determined using a primed continuous infusion of [6,6-2H]glucose, whereas the rate of gluconeogenesis (Rgng) was estimated from the incorporation of 13C into glucose (via pyruvate carboxylase) from simultaneously infused [13C]bicarbonate. Training did not affect glucose kinetics at rest but reduced the average Ra during exercise by 42% [from 36.8 +/- 3.8 to 21.5 +/- 3.6 (SE) mumol.min-1.kg-1; P < 0.001]. This decrease appeared to be mostly due to a reduction in hepatic glycogenolysis. However, the estimated Rgng during exercise also decreased significantly (P < 0.001) with training, falling from 7.5 +/- 1.6 mumol.min-1.kg-1 (23 +/- 3% of total Ra) before training to 3.1 +/- 0.6 mumol.min-1.kg-1 (14 +/- 3% of total Ra) after training. These training-induced adaptations in hepatic glucose metabolism were associated with an attenuated hormonal response to exercise (i.e., higher insulin and lower glucagon, norepinephrine, and epinephrine concentrations) as well as a reduced availability of gluconeogenic precursors (i.e., lower lactate and glycerol concentrations). We conclude that endurance training reduces both hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men.
The effect of the temperature of ingested water on the rise in core temperature (Tco) during exercise is not clear. Seven trained subjects were recruited to complete 2 hr of recumbent cycling at 51% VO2peak in a temperate environment (Ta = 26 degrees C, relative humidity = 40%) on four occasions, while ingesting either no fluid (trial NF26), cold water (0.5 degree C; trial CD26), cool water (19 degrees C; trial CL26), or warm water (38 degrees C; trial WA26) during the second hour of exercise. A fifth trial was conducted during which convective and radiative heat loss were reduced by raising Ta to 31 degrees C. During this trial, subjects ingested cold water (0.5 degree C; trial CD31). When compared to WA26, over the second hour of exercise, CD26 attenuated the time-averaged changes in (Tco) and forearm blood flow and decreased whole-body sweat rate and forearm sweat rate (p < .05). Similarly, relative to WA26, the CL26 trial attenuated the time-averaged changes in Tco and reduced whole-body sweat rate (p < .05) during the second hour of exercise, but CL26 had no significant effect on forearm sweat rate or blood flow. Finally, regardless of beverage temperature, water ingestion (vs. NF26) reduced the time-averaged changes in Tco and in heat storage during the second hour of exercise (p < .05).
The most predictive factor of sarcoma complication is whether the procedure was a delayed or immediate reconstruction. The second most predictive factor is the amount of tissue excised, greater than 500 g of tissue excised was associated with significantly higher complication rates. Other aspects of sarcoma treatment that may be correlated with higher incidence of wound complications are radiation and the use of adjuvant chemotherapy. Early plastic surgery involvement can help with preoperative planning and reduce the complication rates in patients with sarcoma resection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.