Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore (Beardmore Glacier), Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and “younger” (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000–13,000 yr B.P. Outlet-glacier profiles from these drifts constrain late Wisconsin ice-sheet surface elevations. Within these constraints, we give two extreme late Wisconsin reconstructions of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice-shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment one reconstruction shows floating shelf ice, whereas the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600-6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains. Sea level and basal melting probably controlled the extent of grounded ice in the Ross Embayment. The interplay between the precipitation (low late Wisconsin and high Holocene values) and the influence of grounding on outlet glaciers (late Wisconsin thickening and late Wisconsin/Holocene thinning, with effects dying out inland) probably controlled minor elevation changes of the polar plateau.
Former longitudinal profiles of Hatherton Glacier, an outlet through the Transantarctic Mountains, constrain nearby polar plateau elevations and ice-shelf grounding in the southwestern Ross Embayment. Four gravel drift sheets of late Quaternary age beside Hatherton Glacier are, from youngest to oldest, Hatherton, Britannia I, Britannia II, and Danum. The Hatherton drift limit is uniformly 20 to 70 m above the present ice surface. The Britannia II drift limit is within 100 m of the present surface of uppermost Hatherton Glacier but is 450 m above middle Hatherton Glacier. Extrapolation of this profile downglacier indicates a surface elevation 1100 m above the present Ross Ice Shelf. The Britannia I drift limit is parallel to, but 50–100 m below, Britannia II drift. The Danum drift limit is parallel to, but 50–100 m above, the Britannia II profile. From correlation with drifts near McMurdo Sound and from local 14C dates, we assign an early Holocene age to Hatherton drift, a late Wisconsin age to Britannia drifts, and an age of marine isotope Stage 6 to Danum drift. By our age model, the upper reaches of Hatherton Glacier (and presumably the adjacent polar plateau) have not exceeded their current elevations by more than 100–150 m during the last two complete global glacial-interglacial cycles, whereas the middle and lower reaches of Hatherton Glacier have thickened considerably during the last two global glaciations (late Wisconsin and marine isotope Stage 6). The effect of ice-shelf grounding probably was the major control of these changes of Hatherton Glacier. Holocene ice-surface lowering probably represents the last pulse of grounding-line recession in the southwestern Ross Embayment.
In the ocean, breaking waves generate air bubbles which burst at the surface and eject sea spray aerosol (SSA), consisting of sea salt, biogenic organic species, and primary biological aerosol particles (PBAP). Our overall understanding of atmospheric biological particles of marine origin remains poor. Here, we perform a control experiment, using an aerosol time-of-flight mass spectrometer to measure the mass spectral signatures of individual particles generated by bubbling a salt solution before and after addition of heterotrophic marine bacteria. Upon addition of bacteria, an immediate increase occurs in the fraction of individual particle mass spectra containing magnesium, organic nitrogen, and phosphate marker ions. These biological signatures are consistent with 21% of the supermicrometer SSA particles generated in a previous study using breaking waves in an ocean-atmosphere wave channel. Interestingly, the wave flume mass spectral signatures also contain metal ions including silver, iron, and chromium. The nascent SSA bioparticles produced in the wave channel are hypothesized to be as follows: (1) whole or fragmented bacterial cells which bioaccumulated metals and/or (2) bacteria-derived colloids or biofilms which adhered to the metals. This study highlights the potential for transition metals, in combination with specific biomarkers, to serve as unique indicators for the presence of marine PBAP, especially in metal-impacted coastal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.