Over the past 25 years, research in cancer therapeutics has largely focused on two distinct lines of enquiry. In one approach, efforts to understand the underlying cell-autonomous, genetic drivers of tumorigenesis have led to the development of clinically important targeted agents that result in profound, but often not durable, tumour responses in genetically defined patient populations. In the second parallel approach, exploration of the mechanisms of protective tumour immunity has provided several therapeutic strategies - most notably the 'immune checkpoint' antibodies that reverse the negative regulators of T cell function - that accomplish durable clinical responses in subsets of patients with various tumour types. The integration of these potentially complementary research fields provides new opportunities to improve cancer treatments. Targeted and immune-based therapies have already transformed the standard-of-care for several malignancies. However, additional insights into the effects of targeted therapies, along with conventional chemotherapy and radiation therapy, on the induction of antitumour immunity will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in patients.
SUMMARY Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecules (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules including calcineurin and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulated cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directed the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient sensing pathway. We propose that SOCE controls a critical ‘metabolic checkpoint’ at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.
PURPOSE Anaplastic thyroid carcinoma is an aggressive malignancy that is almost always fatal and lacks effective systemic treatment options for patients with BRAF-wild type disease. As part of a phase I/II study in patients with advanced/metastatic solid tumors, patients with anaplastic thyroid carcinoma were treated with spartalizumab, a humanized monoclonal antibody against the programmed death-1 (PD-1) receptor. METHODS We enrolled patients with locally advanced and/or metastatic anaplastic thyroid carcinoma in a phase II cohort of the study. Patients received 400 mg spartalizumab intravenously, once every 4 weeks. The overall response rate was determined according to RECIST v1.1. RESULTS Forty-two patients were enrolled. Adverse events were consistent with those previously observed with PD-1 blockade. Most common treatment-related adverse events were diarrhea (12%), pruritus (12%), fatigue (7%), and pyrexia (7%). The overall response rate was 19%, including three patients with a complete response and five with a partial response. Most patients had baseline tumor biopsies positive for PD-L1 expression (n = 28/40 evaluable), and response rates were higher in PD-L1–positive (8/28; 29%) versus PD-L1–negative (0/12; 0%) patients. The highest rate of response was observed in the subset of patients with PD-L1 ≥ 50% (6/17; 35%). Responses were seen in both BRAF-nonmutant and BRAF-mutant patients and were durable, with a 1-year survival of 52.1% in the PD-L1–positive population. CONCLUSION To our knowledge, this is the first clinical trial to show responsiveness of anaplastic thyroid carcinoma to PD-1 blockade.
The 1,800-mg dose of LCL161, administered as a single agent once weekly, in tablet formulation is the recommended dose for additional study. This combined dose and formulation was well tolerated and had significant pharmacodynamic activity, which warrants additional investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.