In this work we consider the problem of extraction and classification of moving targets in wide area imagery. We use the Air Force Research Laboratory's (AFRL) airborne multisensor dataset, MAMI-1, for testing, wherein moving targets mostly consist of people and vehicles. The movers are extracted using a novel sparse and low-rank matrix decomposition technique. We further compare the classification performance based on SIFT, Dense SIFT, and a superpixel based feature extraction. The results show the superpixel approach as the most advantageous.
Learning visual feature representations for video analysis is a daunting task that requires a large amount of training samples and a proper generalization framework. Many of the current state of the art methods for video captioning and movie description rely on simple encoding mechanisms through recurrent neural networks to encode temporal visual information extracted from video data. In this paper, we introduce a novel multitask encoder-decoder framework for automatic semantic description and captioning of video sequences. In contrast to current approaches, our method relies on distinct decoders that train a visual encoder in a multitask fashion. Our system does not depend solely on multiple labels and allows for a lack of training data working even with datasets where only one single annotation is viable per video. Our method shows improved performance over current state of the art methods in several metrics on multi-caption and single-caption datasets. To the best of our knowledge, our method is the first method to use a multi-task approach for encoding video features. Our method demonstrates its robustness on the Large Scale Movie Description Challenge (LSMDC) 2017 where our method won the movie description task and its results were ranked among other competitors as the most helpful for the visually impaired.
Designing deep networks robust to adversarial examples remains an open problem. Likewise, recent zeroth order hard-label attacks on image classification models have shown comparable performance to their first-order, gradient-level alternatives. It was recently shown in the gradient-level setting that regular adversarial examples leave the data manifold, while their on-manifold counterparts are in fact generalization errors. In this paper, we argue that query efficiency in the zeroth-order setting is connected to an adversary's traversal through the data manifold. To explain this behavior, we propose an information-theoretic argument based on a noisy manifold distance oracle, which leaks manifold information through the adversary's gradient estimate. Through numerical experiments of manifold-gradient mutual information, we show this behavior acts as a function of the effective problem dimensionality and number of training points. On real-world datasets and multiple zeroth-order attacks using dimension-reduction, we observe the same universal behavior to produce samples closer to the data manifold. This results in up to two-fold decrease in the manifold distance measure, regardless of the model robustness. Our results suggest that taking the manifold-gradient mutual information into account can thus inform better robust model design in the future, and avoid leakage of the sensitive data manifold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.