The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the electrolyte and leading to a higher utilization of sulfur and increased capacities.
Among the most challenging issues in electrochemical energy storage is developing insightful in situ probes of redox processes for a working cell. This is particularly true for cells that operate on the basis of chemical transformations such as Li−S and Li−O 2 , where the factors that govern capacity and cycling stability are difficult to access owing to the amorphous nature of the intermediate species. Here, we investigate cathodes for the Li−S cell comprised of sulfur-imbibed robust spherical carbon shells with tailored porosity that exhibit excellent cycling stability. Their highly regular nanoscale dimensions and thin carbon shells allow highly uniform electrochemical response and further enable direct monitoring of sulfur speciation within the cell over the entire redox range by operando X-ray absorption spectroscopy on the S K-edge. The results reveal the first detailed evidence of the mechanisms of sulfur redox chemistry on cycling, showing how sulfur fraction (under-utilization) and sulfide precipitation impact capacity. Such information is critical for promoting improvements in Li−S batteries. SECTION: Energy Conversion and Storage; Energy and Charge Transport
The possibility of achieving high-energy, long-life storage batteries has tremendous scientific and technological significance. An example is the Li-s cell, which can offer a 3-5-fold increase in energy density compared with conventional Li-ion cells, at lower cost. Despite significant advances, there are challenges to its wide-scale implementation, which include dissolution of intermediate polysulphide reaction species into the electrolyte. Here we report a new concept to mitigate the problem, which relies on the design principles of drug delivery. our strategy employs absorption of the intermediate polysulphides by a porous silica embedded within the carbon-sulphur composite that not only absorbs the polysulphides by means of weak binding, but also permits reversible desorption and release. It functions as an internal polysulphide reservoir during the reversible electrochemical process to give rise to long-term stabilization and improved coulombic efficiency. The reservoir mechanism is general and applicable to Li/s cathodes of any nature.
The possibility of achieving high-energy, long-life storage batteries has tremendous scientific and technological significance. A prime example is the Li–S cell, which can offer a 3–5-fold increase in energy density compared with conventional Li-ion cells, at lower cost. Despite significant recent advances, there are challenges to its wide-scale implementation. Upon sulfur reduction, intermediate soluble lithium polysulfides readily diffuse into the electrolyte, causing capacity fading and poor Coulombic efficiency in the cell. Herein, we increase the capacity retention and cycle life of the Li–S cell through the use of nanocrystalline and mesoporous titania additives as polysulfide reservoirs and examine the role of surface adsorption vs pore absorption. We find that the soluble lithium polysulfides are preferentially absorbed within the pores of the nanoporous titania at intermediate discharge/charge. This provides the major factor in stabilizing capacity although surface binding (adsorption) also plays a more minor role. A cell containing TiO2 with a 5 nm pore diameter exhibited a 37% greater discharge capacity retention after 100 cycles than a cell without the titania additive, which was optimum compared to the other titania that were examined.
Graphene-sulfur composites with sulfur fractions as high as 87 wt% are prepared using a simple one-pot, scalable method. The graphene envelops the sulfur particles, providing a conductive shrink-wrap for electron transport. These materials are efficient cathodes for Li-S batteries, yielding 93% coulombic efficiency over 50 cycles with good capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.