Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5 and 3 RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5 and 3 elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.
SummaryReporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green¯uorescent protein (GFP) de novo, optimizing its codon usage to re¯ect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5¢-and 3¢-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a nonoptimized GFP cassette (GFPncb), also under the control of the rbcL 5¢-and 3¢-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate »80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5¢-and 3¢-UTRs, is suf®ciently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.
Expression of chloroplast genes is primarily regulated posttranscriptionally, and a number of RNA elements, found in either the 5'- or 3'-untranslated regions (UTRs) of plastid mRNAs, that impact gene expression have been identified. Complex regulatory and feedback mechanisms influence both translation and protein accumulation, making assignment of roles for specific RNA elements difficult. To identify specific contributions made by various UTRs on translation of plastid mRNAs, we used a heterologous gfp reporter gene that is fused combinatorially to chloroplast 5'- and 3'-UTRs. In general, the 5'-UTR, including the promoter, of the plastid atpA and psbD genes produced the highest levels of chimeric mRNA and protein accumulation, while the 5'-UTR of the rbcL and psbA genes produced less mRNA and protein. Varying the 3'-UTR had little impact on mRNA and protein accumulation, as long as a 3'-UTR was present. Overall, accumulation of chimeric mRNAs was proportional to protein accumulation, with a few notable exceptions. Light-regulated translation continues to operate in chimeric mRNAs containing the 5'-UTR of either the psbA or psbD mRNAs, despite translation of these two chimeric mRNAs at very different efficiencies, suggesting that translational efficiency and light-regulated translation are separate events. Translation of some chimeric mRNAs was much more efficient than others, suggesting that interactions between the untranslated and coding sequences can dramatically impact translational efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.