Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.
The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment1–4. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions1,5, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators6–10. Individuals can temporally segregate their daily activities (e.g. prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (e.g. group foraging, communal defence, pairs reproducing or caring for offspring)6–9,11. The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood5–7,9. Here, we address this in the context of biparental care, a particularly sensitive phase of social synchronization12 where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally-incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within– and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1 – 19 hours, while period length–the time in which a parent’s probability to incubate cycles once between its highest and lowest value – varied from 6 – 43 hours. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity5–7,9. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.