Coastal Louisiana (USA) continues to sustain immense land and habitat losses due to subsidence, sea‐level rise, and storm events. Approximately 65 million m3 (85 million cubic yards) of sediment is dredged annually from Gulf Coast federal navigation channels to maintain safe waterway passage. The beneficial use of these sediments continues to increase, and now this sediment is recognized as a critical resource in large‐scale (estimated multibillion dollar) ecosystem restoration efforts to mitigate land and habitat losses along the US Gulf Coast. However, the documentation of restoration benefits where dredged sediments are the primary resource is lacking, which limits the potential for future applications. Therefore, this study documents the progress to restore marsh habitat and the resultant benefits in West Bay, Louisiana, and investigates how the restoration practices align with principles of the US Army Corps of Engineers (USACE) Engineering with Nature® (EWN®) and UN Sustainable Development Goals (UN SDGs). West Bay, a 4964‐ha subdelta adjacent to the Mississippi River, typifies risks of coastal land loss that also threatens the integrity of the adjacent federal navigation channel. To help restore coastal marsh habitat on a large spatial and temporal scale, the USACE constructed an uncontrolled diversionary channel from the Mississippi River and with subsequent direct and strategic placement of dredged sediment. Restoration performance was assessed through remotely sensed methods using data spanning approximately 70 years. To date, placement of dredged sediment in the bay has facilitated the creation of over 800 ha of new land in the formerly open waters of West Bay. The West Bay restoration project aligns with the principles of the EWN initiative, which supports more sustainable practices to deliver economic, environmental, and social benefits through collaborative processes and meaningfully integrates 10 of the UN SDGs designed to achieve a better and more sustainable future. Integr Environ Assess Manag 2022;18:1162–1173. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Data related to forest cover in the Cache River Basin, Arkansas, USA were collected and analyzed to quantify changes in forest cover since 1935. Forest cover loss during the period 1935 to 1987 was characterized using data derived from aerial photography, historical map products, and Landsat satellite muhispectral imagery. Forest cover in the basin declined from 65% to 15% over the 52-year period (a loss of 108,000 ha of tbrest cover). There was little change in forest cover between t975 and 1987. Remaining forest stands in the basin are fragmented and small in size. Comparing forest-stand data with Soil Conservation Service data revealed that 90% of the forest loss in the southern half of the basin occurred in hydric soil areas, thus indicating a significant loss of forested wetlands.
The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at www.erdc.usace.army.mil. To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.