Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.
As part of the Joint Polarization Experiment (JPOLE), the National Severe Storms Laboratory conducted an operational demonstration of the polarimetric utility of the Norman, Oklahoma (KOUN), Weather Surveillance Radar-1988 Doppler (WSR-88D). The capability of the KOUN radar to estimate rainfall is tested on a large dataset representing different seasons and different types of rain. A dense gauge network—the Agricultural Research Service (ARS) Micronet—is used to validate different polarimetric algorithms for rainfall estimation. One-hour rain totals are estimated from the KOUN radar using conventional and polarimetric algorithms and are compared with hourly accumulations measured by the gauges. Both point and areal rain estimates are examined. A new “synthetic” rainfall algorithm has been developed for rainfall estimation. The use of the synthetic polarimetric algorithm results in significant reduction in the rms errors of hourly rain estimates when compared with the conventional nonpolarimetric relation: 1.7 times for point measurements and 3.7 times for areal rainfall measurements.
The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.