We have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternative splice site use, intron retention), differential 5' UTR (initiation of transcription) use, and differential 3' UTR (alternative polyadenylation) use. These results demonstrate that the regulatory effects of genetic variation in a normal human population are far more complex than previously observed. This extra layer of molecular diversity may account for natural phenotypic variation and disease susceptibility.
Adipose tissue located within the abdominal cavity has been suggested to be functionally and metabolically distinct from that of the subcutaneous compartment. These differences could play a role in obesity‐related complications. The aim of this study was to compare gene expression profiles of subcutaneous and visceral adipose tissues of 10 nondiabetic, normolipidemic obese men. Affymetrix human U133A arrays (10 arrays for subcutaneous fat samples and 10 arrays for visceral fat samples) were used. Differential gene expression was confirmed by real‐time polymerase chain reaction in a subset of genes. A total of 5894 transcripts were detected in both depots in all 10 subjects, and 409 transcripts representing 347 encoded genes were differentially expressed. Of these, 131 genes were expressed at higher levels in subcutaneous adipose tissue, and 216 were expressed more abundantly in visceral fat. Differentially expressed profiles included genes of the Wnt signaling pathway, as well as CEPBA and HOX genes. In addition, genes involved in lipolytic stimuli and cytokine secretion were differentially expressed. The identification of a consistent and rather uniform pattern of differentially expressed genes between the two fat depots using multiple array replicates (10 arrays per fat compartment) generated new perspectives for future research on regional differences in adipose tissue biology.
Methylmalonic aciduria and homocystinuria, cblC type, is a rare disorder of intracellular vitamin B(12) (cobalamin [Cbl]) metabolism caused by mutations in the MMACHC gene. MMACHC was sequenced from the gDNA of 118 cblC individuals. Eleven novel mutations were identified, as well as 23 mutations that were observed previously. Six sequence variants capture haplotype diversity in individuals across the MMACHC interval. Genotype-phenotype correlations of common mutations were apparent; individuals with c.394C>T tend to present with late-onset disease whereas patients with c.331C>T and c.271dupA tend to present in infancy. Other missense variants were also associated with late- or early-onset disease. Allelic expression analysis was carried out on human cblC fibroblasts compound heterozygous for different combinations of mutations including c.271dupA, c.331C>T, c.394C>T, and c.482G>A. The early-onset c.271dupA mutation was consistently underexpressed when compared to control alleles and the late-onset c.394C>T and c.482G>A mutations. The early-onset c.331C>T mutation was also underexpressed when compared to control alleles and the c.394C>T mutation. Levels of MMACHC mRNA transcript in cell lines homozygous for c.271dupA, c.331C>T, and c.394C>T were assessed using quantitative real-time RT-PCR. Cell lines homozygous for the late onset c.394C>T mutation had significantly higher levels of transcript when compared to cell lines homozygous for the early-onset mutations. Differential or preferential MMACHC transcript levels may provide a clue as to why individuals carrying c.394C>T generally present later in life.
The identification of human sequence polymorphisms that regulate gene expression is key to understanding human genetic diseases. We report a survey of human genes that demonstrate allelic differences in gene expression, reflecting the presence of putative allele-specific cis-acting factors of either genetic or epigenetic nature. The expression of allelic transcripts in heterozygous samples is assessed directly by relative quantitation of intragenic marker alleles in messenger or heteronuclear RNA derived from cells or tissues. This survey used 193 single-nucleotide polymorphisms (SNPs) from 129 genes expressed in lymphoblastoid cell lines, to identify 23 genes (18%) with common allele-specific transcripts whose expression deviated from the expected equimolar ratio. A subset of these deviations, or "allelic imbalances," can be observed in multiple samples derived from reference CEPH ("Centre d'Etude du Polymorphisme Humain") pedigrees and demonstrate a spectrum of patterns of transmission, including cosegregation of allelic skewing across generations compatible with Mendelian inheritance as well as random monoallelic expression for three genes (IL1A, HTR2A, and FGB). Additional studies for BTN3A2 provide evidence of SNPs and haplotypes in complete linkage disequilibrium with high- and low-expressing transcripts. The pipeline described herein offers tools for efficient identification and characterization of allelic expression allowing identification of regulatory sequence variants as well as epigenetic variation affecting human gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.