An analysis and modeling method of the diagnostic characteristics of a mechanical or electromechanical system is presented. Diagnosability analysis is especially relevant given the complexities and functional interdependencies of modern-day systems, since improvements in diagnosability can lead to a reduction of a system’s life-cycle costs. Failure and diagnostic analysis leads to system diagnosability modeling with the Failure Modes and Effects Analysis (FMEA) and component-indication relationship analysis. Methods are then developed for translating the diagnosability model into mathematical methods for computing metrics such as distinguishability and susceptibility. These methods involve the use of matrices to represent the failure and replacement characteristics of the system. Diagnosability metrics are extracted by matrix multiplication. These metrics are useful when comparing the diagnosability of proposed designs or predicting the life-cycle costs of fault isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.