Morphogenesis of plant cells is tantamount to the shaping of the stiff cell wall that surrounds them. To this end, these cells integrate two concomitant processes: 1), deposition of new material into the existing wall, and 2), mechanical deformation of this material by the turgor pressure. However, due to uncertainty regarding the mechanisms that coordinate these processes, existing models typically adopt a limiting case in which either one or the other dictates morphogenesis. In this report, we formulate a simple mechanism in pollen tubes by which deposition causes turnover of cell wall cross-links, thereby facilitating mechanical deformation. Accordingly, deposition and mechanics are coupled and are both integral aspects of the morphogenetic process. Among the key experimental qualifications of this model are: its ability to precisely reproduce the morphologies of pollen tubes; its prediction of the growth oscillations exhibited by rapidly growing pollen tubes; and its prediction of the observed phase relationships between variables such as wall thickness, cell morphology, and growth rate within oscillatory cells. In short, the model captures the rich phenomenology of pollen tube morphogenesis and has implications for other plant cell types.
Fracture at minimum energetic cost is needed to maximize dispersal distance. However, a premature fracture risks launching the seed before it has stored sufficient energy to reach appreciable range, resulting in a short range 'dud'. The two-sided constraint, in which the work of fracture must be high enough to prevent premature fracture but low enough to maximize ejection distance, is in sharp contrast to classical fracture mechanics problems where avoidance
SUMMARYThe filaree (Erodium cicutarium), a small, flowering plant related to geraniums, possesses a unique seed dispersal mechanism: the plant can fling its seeds up to half a meter away; and the seeds can bury themselves by drilling into the ground, twisting and untwisting in response to changes in humidity. These feats are accomplished using awns, helical bristles of dead but hygroscopically active tissue attached to the seeds. Here, we describe the kinematics of explosive dispersal and self-burial based on detailed high-speed and time-lapse videos. We use these observations to develop a simple mechanical model that accounts for the coiling behavior of the awn and allows comparison of the strain energy stored in the awn with the kinetic energy at launch. The model is used to examine tradeoffs between dispersal distance and reliability of the dispersal mechanism. The mechanical model may help in understanding the invasive potential of this species and provides a framework for examining other evolutionary tradeoffs in seed dispersal mechanisms among the Geraniaceae.
Supplementary material available online at
We define a mathematical formalism based on the concept of an ''open dynamical system'' and show how it can be used to model embodied cognition. This formalism extends classical dynamical systems theory by distinguishing a ''total system'' (which models an agent in an environment) and an ''agent system'' (which models an agent by itself), and it includes tools for analyzing the collections of overlapping paths that occur in an embedded agent's state space. To illustrate the way this formalism can be applied, several neural network models are embedded in a simple model environment. Such phenomena as masking, perceptual ambiguity, and priming are then observed. We also use this formalism to reinterpret examples from the embodiment literature, arguing that it provides for a more thorough analysis of the relevant phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.