ObjectivesTo develop and validate a microdilution method for measuring the minimum inhibitory concentration (MIC) of biosurfactants.ResultsA standardized microdilution method including resazurin dye has been developed for measuring the MIC of biosurfactants and its validity was established through the replication of tetracycline and gentamicin MIC determination with standard bacterial strains.ConclusionThis new method allows the generation of accurate MIC measurements, whilst overcoming critical issues related to colour and solubility which may interfere with growth measurements for many types of biosurfactant extracts.
Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur.
Burkholderia thailandensis E264 is a rhamnolipid (RL)-producing gram-negative bacterium first isolated from the soils and stagnant waters of central and north-eastern Thailand. Growth of B. thailandensis E264 under two different incubation temperatures (25 and 30 °C) resulted in a significantly higher dry cell biomass production at 30 °C (7.71 g/l) than at 25 °C (4.75 g/l) after 264 h; however, incubation at the lower temperature resulted in consistently higher concentration of RL production throughout the growth period. After 264 h, the concentration of crude RL extract for the 25 °C culture was 2.79 g/l compared to 1.99 g/l for the 30 °C culture. Overall RL production concentration after 264 h was 0.258 g/g dry cell biomass (DCB) for the 30 °C culture compared to 0.587 g/g DCB for the 25 °C culture. Real-time PCR (qPCR) was also used to analyse expression of the RL biosynthesis genes throughout the incubation period at 25 °C showing that the expression of the rhlA, rhlB and rhlC genes is continuous. During the log and early stationary phases of growth, expression levels remain low and are increased upon entry to the late stationary phase. B. thailandensis E264 produces mostly di-RLs and the Di-RL C14-C14 in most abundance (41.88 %). Fermentations were also carried out in small-scale bioreactors (4 l working volume) under controlled conditions, and results showed that RL production was maintained. Our findings show that B. thailandensis E264 has excellent potential for industrial scale RL production.
Microbially produced rhamnolipids have significant commercial potential; however, the main bacterial producer, Pseudomonas aeruginosa, is an opportunistic human pathogen, which limits biotechnological exploitation. The non-pathogenic species Burkholderia thailandensis produces rhamnolipids; however, yield is relatively low. The aim of this study was to determine whether rhamnolipid production could be increased in Burkholderia thailandensis through mutation of genes responsible for the synthesis of the storage material polyhydroxyalkanoate (PHA), thereby increasing cellular resources for the production of rhamnolipids. Potential PHA target genes were identified in B. thailandensis through comparison with known function genes in Pseudomonas aeruginosa. Multiple knockout strains for the phbA, phbB and phbC genes were obtained and their growth characteristics and rhamnolipid and PHA production determined. The wild-type strain and an rhamnolipid (RL)-deficient strain were used as controls. Three knockout strains (ΔphbA1, ΔphbB1 and ΔphbC1) with the best enhancement of rhamnolipid production were selected for detailed study. ΔphbB1 produced the highest level of purified RL (3.78 g l−1) compared to the wild-type strain (1.28 g l−1). In ΔphbB1, the proportion of mono-rhamnolipid was also increased compared to the wild-type strain. The production of PHA was reduced by at least 80% in all three phb mutant strains, although never completely eliminated. These results suggest that, in contrast to Pseudomonas aeruginosa, knockout of the PHA synthesis pathway in Burkholderia thailandensis could be used to increase rhamnolipid production. The evidence of residual PHA production in the phb mutant strains suggests B. thailandensis possesses a secondary unelucidated PHA synthesis pathway.Electronic supplementary materialThe online version of this article (10.1007/s00253-017-8540-x) contains supplementary material, which is available to authorized users.
During the construction of recording head devices, corrosion of metal features and subsequent deposition of corrosion by-products have been observed. Previous studies have determined that the use of N-methylpyrrolidone (NMP) may be a contributing factor. In this study, we report the use of a novel multiplatform analytical approach comprising of pH, liquid chromatography/UV detection (LC/UV), inductively coupled plasma optical emission spectroscopy (ICP-OES), and LC/mass spectrometry (LC/MS) to demonstrate that reaction conditions mimicking those of general photoresist removal processes can invoke the oxidation of NMP during the photolithography lift-off process. For the first time, we have confirmed that the oxidation of NMP lowers the pH, facilitating the dissolution of transition metals deposited on wafer substrates during post-mask and pre-lift-off processes in microelectronic fabrication. This negatively impacts upon the performance of the microelectronic device. Furthermore, it was shown that, by performing the process in an inert atmosphere, the oxidation of NMP was suppressed and the pH was stabilized, suggesting an affordable modification of the photolithography lift-off stage to enhance the quality of recording heads. This novel study has provided key data that may have a significant impact on current and future fabrication process design, optimization, and control. Results here suggest the inclusion of pH as a key process input variable (KPIV) during the design of new photoresist removal processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.