Polycystic kidney disease (PKD) is a commonly inherited disorder characterized by cyst formation and fibrosis (Wilson, N Engl J Med 350:151-164, 2004) and is caused by mutations in cilia or cilia-related proteins, such as polycystin 1 or 2 (Oh and Katsanis, Development 139:443-448, 2012; Kotsis et al., Nephrol Dial Transplant 28:518-526, 2013). A major pathological feature of PKD is the development of interstitial inflammation and fibrosis with an associated accumulation of inflammatory cells (Grantham, N Engl J Med 359:1477-1485, 2008; Zeier et al., Kidney Int 42:1259-1265, 1992; Ibrahim, Sci World J 7:1757-1767, 2007). It is unclear whether inflammation is a driving force for cyst formation or a consequence of the pathology (Ta et al., Nephrology 18:317-330, 2013) as in some murine models cysts are present prior to the increase in inflammatory cells (Phillips et al., Kidney Blood Press Res 30:129-144, 2007; Takahashi et al., J Am Soc Nephrol JASN 1:980-989, 1991), while in other models the increase in inflammatory cells is present prior to or coincident with cyst initiation (Cowley et al., Kidney Int 43:522-534, 1993, Kidney Int 60:2087-2096, 2001). Additional support for inflammation as an important contributor to cystic kidney disease is the increased expression of many pro-inflammatory cytokines in murine models and human patients with cystic kidney disease (Karihaloo et al., J Am Soc Nephrol JASN 22:1809-1814, 2011; Swenson-Fields et al., Kidney Int, 2013; Li et al., Nat Med 14:863-868, 2008a). Based on these data, an emerging model in the field is that disruption of primary cilia on tubule epithelial cells leads to abnormal cytokine cross talk between the epithelium and the inflammatory cells contributing to cyst growth and fibrosis (Ta et al., Nephrology 18:317-330, 2013). These cytokines are produced by interstitial fibroblasts, inflammatory cells, and tubule epithelial cells and activate multiple pathways including the JAK-STAT and NF-κB signaling (Qin et al., J Am Soc Nephrol JASN 23:1309-1318, 2012; Park et al., Am J Nephrol 32:169-178, 2010; Bhunia et al., Cell 109:157-168, 2002). Indeed, inflammatory cells are responsible for producing several of the pro-fibrotic growth factors observed in PKD patients with fibrosis (Nakamura et al., Am J Nephrol 20:32-36, 2000; Wilson et al., J Cell Physiol 150:360-369, 1992; Song et al., Hum Mol Genet 18:2328-2343, 2009; Schieren et al., Nephrol Dial Transplant 21:1816-1824, 2006). These growth factors trigger epithelial cell proliferation and myofibroblast activation that stimulate the production of extracellular matrix (ECM) genes including collagen types 1 and 3 and fibronectin, leading to reduced glomerular function with approximately 50% of ADPKD patients progressing to end-stage renal disease (ESRD). Therefore, treatments designed to reduce inflammation and slow the rate of fibrosis are becoming important targets that hold promise to improve patient life span and quality of life. In fact, recent studies in several PKD mouse models indicate that depletion of ...
Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit, NPHP-4 influences localization and function of a distal ciliary kinesin. Moreover, data suggest human OSM-3 homolog (Kif17) could act as a modifying locus affecting disease penetrance or expressivity in NPHP patients.
Objective Many different genes or mediators have been implicated in promoting the development of vasculitis, although little is known regarding the mechanisms that normally act to suppress lesion formation. eNOS (NOS3) has been shown to inhibit vascular inflammation in many different model systems, but its roles in the pathogenesis of vasculitis have not been elucidated. The aim of this study was to determine the functions of eNOS in the initiation and progression of vasculitic lesion formation. Methods Nos3 mutant MRL/MpJ-Faslpr mice were generated and comprehensively evaluated and compared to controls for the development of autoimmune disease, including vasculitic lesion formation and glomerulonephritis. Results Nos3−/− MRL/MpJ-Faslpr mice had accelerated onset and increased incidence of renal vasculitis compared to Nos3+/+ controls. In contrast, no significant differences in severity of glomerulonephritis were observed between groups. Vasculitis was also observed in eNOS deficient mice in other organs, including increased expression in the lung. Ultrastructural analyses of renal lesions revealed the presence of electron dense deposits in affected arteries, while IgG, IgA, and C3 deposition was observed in some vessels in Nos3−/− kidneys. In addition, eNOS deficient mice showed increased levels of circulating IgG-IgA immune complexes at 20 weeks of age compared to Nos3+/+ MRL/MpJ-Faslpr and Nos3−/− C57BL/6 mice. Conclusion These findings strongly indicate that eNOS serves as a negative regulator of vasculitis in MRL/MpJ-Faslpr mice, and further suggest that NO produced by this enzyme may be critical for inhibiting lesion formation and vascular damage in human vasculitic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.