Sustainability necessitates the protection of infrastructure from any kind of deterioration over the life cycle of the asset. Deterioration in the capacity of reinforced concrete (RC) infrastructure (e.g., bridges, buildings, etc.) may result from localised damage sustained during extreme loading scenarios, such as earthquakes, hurricanes or tsunamis. In addition, factors such as the corrosion of rebars or ageing may also deteriorate or degrade the capacity of an RC column, thereby necessitating immediate strengthening to either extend or ensure its design life is not limited. The aim of this paper is to provide a state-of-the-art review of various strengthening and repair methods for RC columns proposed by different researchers in the last two decades. The scope of this review paper is limited to jacketing techniques for strengthening and/or repairing both normal- and high-strength RC columns. The paper also identifies potential research gaps and outlines the future direction of research into the strengthening and repair of RC columns.
This paper provides an overview and the results of a recent experimental study testing the lateral cyclic displacement capacity of limited ductile reinforced concrete (RC) walls. The experimental program included one monolithic cast in-situ rectangular wall specimen and one monolithic cast in-situ box-shaped building core specimen. The specimens were tested using the MAST system at Swinburne University of Technology. They were tested under cyclic in-plane unidirectional lateral load with a shear-span ratio of 6.5. The specimens were detailed to best match typical RC construction practices in regions of lower seismicity, e.g. Australia, which generally results in a ‘limited ductile’ classification to the Australian earthquake loading code. This reinforcement detailing consisted of constant-spaced horizontal and vertical bars on each face of the wall and lap splices of the vertical reinforcement at the base of the wall in the plastic hinge region. The rectangular wall and building core specimens both achieved a relatively good lateral displacement capacity given the limited ductile reinforcement detailing adopted. The lap splice at the base of the specimens resulted in a somewhat different post-yield curvature distribution being developed. Rather than a typical plastic hinge with distributed cracks being developed, a ‘two crack’ plastic hinge was formed. This consisted of one major crack at the base of the wall and another at the top of the lap splice, with only hairline cracks developing between these two major cracks. The majority of the plastic rotation was concentrated in each of these two major cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.