The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F 2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology.5-enolpyruvylshikimate-3-phosphate synthase | herbicide resistance | mobile genetic element | evolution | Palmer amaranth
Allelopathy has been hypothesized to promote the success of invasive plants. Support for the role of allelopathy in invasions has emerged from research on the candidate allelochemical ())-catechin, which is secreted by spotted knapweed. Here we describe new methods to quantify catechin in liquid and soil. With a new technique, we assayed catechin production by individual plants in liquid media and found levels up to two orders of magnitude less than previously reported. An acetone/water solution provided consistent recovery of catechin from soil, with percent recovery depending upon soil type. We evaluated soils from two spotted knapweed sites in Montana, USA, but found no measurable catechin. Idaho fescue, a native species reportedly sensitive to catechin, only exhibited slightly reduced growth at concentrations 10 times higher than previously reported to cause 100% mortality. Our results emphasize that more research is required to clarify the role of catechin in the invasion of spotted knapweed.
Allelopathy is a notoriously difficult mechanism to demonstrate. There has been a recent resurgence of interest in allelopathy because of the work done on the invasive weed spotted knapweed and its putative allelochemical, (+/-)-catechin. In this study we collected and analyzed soil samples taken from three, long-term knapweed infested sites in Montana, USA during the summer and fall of 2005. We only detected catechin in all the soil cores at one time point (August, 2005) at two of the sites. Field levels from these two sites were nearly three orders of magnitude lower than what has previously been reported to cause reduced growth in a sensitive native species. Fourteen percent of the remaining soil cores contained low but detectable levels (<0.11 ppm) of (+/-)-catechin. Additional experiments indicated that soil moisture appears to play a significant role in whether or not catechin degrades rapidly or remains in the soil. Adding to previous work, this paper sheds doubt on the importance of this chemical in spotted knapweed invasion success.
The productivity and native species diversity of Great Plains grasslands have been substantially reduced by past management that facilitated the establishment of invasive exotic weeds and displacement of native species. Management strategies are needed to rapidly restore the productive capacity and biological diversity of these degraded grasslands. Critically important phases of the grassland restoration process are the reintroduction and establishment of native species. Weed interference is the primary constraint to successful establishment of native plants. The goal of our research is to develop strategies that use multiple technologies, including herbicides, to expedite grassland revegetation with native grasses and forbs. Imidazolinone herbicides (AC 263,333, imazapyr, and imazethapyr) were used successfully to improve establishment of native perennial grasses (big bluestem, switchgrass, little bluestem) and selected forbs (blackeyed-susan, purple prairieclover, Illinois bundleflower, trailing crownvetch, and upright prairie coneflower) on cropland and as components of a strategy to revegetate leafy spurge-infested rangeland with native tallgrasses. Imazethapyr at 70 or 110 g ai/ha applied at planting resulted in stands of big bluestem and little bluestem that were similar or superior to stands established where atrazine was applied. Seedling grasses were susceptible to imazapyr at two of three study sites. Imazapyr at 560 g ai/ha plus sulfometuron at 100 g ai/ha applied in fall was the optimum treatment for suppression of leafy spurge and exotic cool-season grasses and establishment of big bluestem and switchgrass on degraded rangeland sites. Establishment of selected forbs was improved by PRE treatment with AC 263,222 or imazethapyr at 70 g ai/ha. This research provides evidence that the imidazolinone herbicides can be important components of integrated weed management strategies designed to reverse deterioration of grasslands by reestablishing native species, improving grassland productivity, and decreasing the prevalence of exotic weeds.
Figueiredo, Marcelo R. A.; Leibhart, Lacy J.; Reicher, Zachary J.; Tranel, Patrick J.; Nissen, Scott J.; Westra, Philip; Bernards, Mark L.; Kruger, Greg R.; Gaines, Todd A.; and Jugulam, Mithila, "Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population" (2017 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.