Background: Immunological responses to proteins that adhere to ultra-high molecular weight polyethylene have not, to our knowledge, been examined previously in patients who have aseptic loosening. In the current study, polyethylene components from fortynine failed prostheses recovered during revision procedures were examined for the presence of antibodies that were bound to the polyethylene surface or that were reactive with other proteins that were bound to the polyethylene surface. Methods: The polyethylene components consisted of thirty acetabular cups recovered during revision total hip arthroplasties and nineteen tibial components recovered during revision total knee arthroplasties. After extensive washing, bound proteins were extracted from the polyethylene components with use of 0.1molar glycine-hydrogen chloride solution followed by four-molar guanidine hydrochloride solution. Results: Sufficient protein for analysis was recovered from forty-two polyethylene components. Polyacrylamide gel electrophoresis demonstrated a minimum of one and a maximum of twelve protein bands, with molecular weights ranging from thirteen to 231 kilodaltons. Immunoblotting revealed the presence of type-I collagen in most (thirty-four) of the forty-two explants, whereas aggrecan proteoglycans were detected in eight samples. Immunoglobulin also was detected in most (thirty-three) extracts, whereas type-II collagen was consistently absent. The presence of autologous antibodies directed against polyethylenebound proteins in sera drawn at the time of the revision was investigated. Antibodies that were reactive against the ultra-high molecular weight polyethylene-bound
Rats were subjected to cardiac arrest and resuscitation, 90 min of reperfusion, and in situ perfusion fixation. Thiobarbituric acid (TBA) was included in the aldehyde-free perfusion fixative, the TBA reaction was driven in situ by heating, and fluorescence microscopy was utilized to characterize the location of products of the TBA reaction. Absorbance-difference spectra were performed on butanol-extracted brain homogenates to confirm in situ formation of TBA adducts with aldehydic products of lipid peroxidation. Nissl-stained sections revealed good cellular fixation without shrinkage artifacts. Fluorescence was not seen microscopically when TBA was omitted from the perfusion fixative, and little fluorescence was present in normal brains or brains after ischemia only. However, after 90-min reperfusion, intense granular fluorescence was seen in the neuronal perikarya (especially at the base of the apical dendrite) of numerous pyramidal neurons in cortical layers 5 and 6 and in the pyramidal layer of Ammon's horn in the hippocampus. The nuclei of these cells exhibited no fluorescence. Fluorescence was also present in some striatal neurons, but was absent in the adjacent radial bundles. Neither glia nor white matter exhibited similar fluorescence. These observations indicate that neurons in the selectively vulnerable zones of the cortex and hippocampus are early and specific targets of lipid peroxidation during post-ischemic reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.