Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.05 and 0.20f ce (tens of hertz up to ∼300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow, the waves experience significant Doppler downshift and upshift of wave frequency in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 2 nT, where such values represent up to 10% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves.
Context. Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. Aims. Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves. Methods. We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion. Results. Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip. Conclusions. We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind.
Results are presented from a basic heat transport experiment using a magnetized electron temperature filament that behaves as a thermal resonator. A small, crystal cathode injects low energy electrons along the magnetic field into the afterglow of a large pre-existing plasma forming a hot electron filament embedded in a colder plasma. A series of low amplitude, sinusoidal perturbations are added to the cathode discharge bias that create an oscillating heat source capable of driving thermal waves. Langmuir probe measurements demonstrate driven thermal oscillations and allow for the determination of the amplitude and parallel phase velocity of the thermal waves over a range of driver frequencies. The results conclusively show the presence of a thermal resonance and are used to verify the parallel thermal wave dispersion relation based on classical transport theory. A nonlinear transport code is used to verify the analysis procedure. This technique provides a novel measure of the density normalized thermal conductivity, independent of the electron temperature.
The results of a basic electron heat transport experiment using multiple localized heat sources in close proximity and embedded in a large magnetized plasma are presented. The set-up consists of three biased probe-mounted crystal cathodes, arranged in a triangular spatial pattern, that inject low energy electrons along a strong magnetic field into a pre-existing, cold afterglow plasma, forming electron temperature filaments. When the three sources are activated and placed within a few collisionless electron skin depths of each other, a non-azimuthally symmetric wave pattern emerges due to interference of the drift-Alfvén modes that form on each filament’s temperature gradient. Enhanced cross-field transport from chaotic ( $\boldsymbol{E}\times \boldsymbol{B}$ , where $\boldsymbol{E}$ is the electric field and $\boldsymbol{B}$ the magnetic field) mixing rapidly relaxes the gradients in the inner triangular region of the filaments and leads to growth of a global nonlinear drift-Alfvén mode that is driven by the thermal gradient in the outer region of the triangle. Azimuthal flow shear arising from the emissive cathode sources modifies the linear eigenmode stability and convective pattern. A steady-current model with emissive sheath boundary predicts the plasma potential and shear flow contribution from the sources.
The origin of intermittent fluctuations in an experiment involving several interacting electron plasma pressure filaments in close proximity, embedded in a large linear magnetized plasma device, is investigated. The probability density functions of the fluctuations on the inner and outer gradient of the filament bundle are non-Gaussian and the time series contain uncorrelated Lorentzian pulses that give the frequency power spectral densities an exponential shape. A cross-conditionally averaged spatial reconstruction of a temporal event reveals that the intermittent character is caused by radially and azimuthally propagating turbulent structures with transverse spatial scales on the order of the electron skin depth. These eruption events originate from interacting pressure gradient-driven drift-Alfvén instabilities on the outer gradient and edge of the filament bundle. The temporal Lorentzian shape of the intermittent structures and exponential spectra are suggestive of deterministic chaos in the underlying dynamics; this conclusion is supported by the complexity–entropy analysis (CH-plane) that shows the experimental time series are located in the chaotic regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.