A fruitful application of Semantic Technologies in the field of healthcare data analysis has emerged from the collaboration between Oxford and Kaiser Permanente a US healthcare provider (HMO). US HMOs have to annually deliver measurement results on their quality of care to US authorities. One of these sets of measurements is defined in a specification called HEDIS which is infamous amongst data analysts for its complexity. Traditional solutions with either SAS-programs or SQL-queries lead to involved solutions whose maintenance and validation is difficult and binds considerable amount of resources. In this paper we present the project in which we have applied Semantic Technologies to compute the most difficult part of the HEDIS measures. We show that we arrive at a clean, structured and legible encoding of HEDIS in the rule language of the RDF-triple store RDFox. We use RDFox's reasoning capabilities and SPARQL queries to compute and extract the results. The results of a whole Kaiser Permanente regional branch could be computed in competitive time by RDFox on readily available commodity hardware. Further development and deployment of the project results are envisaged in Kaiser Permanente.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.