Cancer evolution is fueled by epigenetic as well as genetic diversity. In chronic lymphocytic leukemia (CLL), intra-tumoral DNA methylation (DNAme) heterogeneity empowers evolution. Here, to comprehensively study the epigenetic dimension of cancer evolution, we integrate DNAme analysis with histone modification mapping and single cell analyses of RNA expression and DNAme in 22 primary CLL and 13 healthy donor B lymphocyte samples. Our data reveal corrupted coherence across different layers of the CLL epigenome. This manifests in decreased mutual information across epigenetic modifications and gene expression attributed to cell-to-cell heterogeneity. Disrupted epigenetic-transcriptional coordination in CLL is also reflected in the dysregulation of the transcriptional output as a function of the combinatorial chromatin states, including incomplete Polycomb-mediated gene silencing. Notably, we observe unexpected co-mapping of typically mutually exclusive activating and repressing histone modifications, suggestive of intra-tumoral epigenetic diversity. Thus, CLL epigenetic diversification leads to decreased coordination across layers of epigenetic information, likely reflecting an admixture of cells with diverging cellular identities.
Although thousands of loci have been associated with human phenotypes, the role of gene-environment (GxE) interactions in determining individual risk of human diseases remains unclear. This is partly because of the severe erosion of statistical power resulting from the massive number of statistical tests required to detect such interactions. Here, we focus on improving the power of GxE tests by developing a statistical framework for assessing quantitative trait loci (QTLs) associated with the trait means and/or trait variances. When applying this framework to body mass index (BMI), we find that GxE discovery and replication rates are significantly higher when prioritizing genetic variants associated with the variance of the phenotype (vQTLs) compared to when assessing all genetic variants. Moreover, we find that vQTLs are enriched for associations with other non-BMI phenotypes having strong environmental influences, such as diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such as BMI can be used for GxE discovery in disease phenotypes such as diabetes. A clear conclusion is that strong GxE interactions mediate the genetic contribution to body weight and diabetes risk.
Background Coronavirus disease 2019 (Covid-19) has rapidly infected millions of people worldwide. Recent studies suggest that racial minorities and patients with comorbidities are at higher risk of Covid-19. In this study, we analyzed the effects of clinical, regional, and genetic factors on Covid-19 positive status. Methods The UK Biobank is a longitudinal cohort study that recruited participants from 2006 to 2010 from throughout the United Kingdom. Covid-19 test results were provided to UK Biobank starting on March 16, 2020. The main outcome measure in this study was Covid-19 positive status, determined by the presence of any positive test for a single individual. Clinical risk factors were derived from UK Biobank at baseline, and regional risk factors were imputed using census features local to each participant’s home zone. We used robust adjusted Poisson regression with clustering by testing laboratory to estimate relative risk. Blood types were derived using genetic variants rs8176719 and rs8176746, and genomewide tests of association were conducted using logistic-Firth hybrid regression. Results This prospective cohort study included 397,064 UK Biobank participants, of whom 968 tested positive for Covid-19. The unadjusted relative risk of Covid-19 for Black participants was 3.66 (95% CI 2.83–4.74), compared to White participants. Adjusting for Townsend deprivation index alone reduced the relative risk to 2.44 (95% CI 1.86–3.20). Comorbidities that significantly increased Covid-19 risk included chronic obstructive pulmonary disease (adjusted relative risk [ARR] 1.64, 95% CI 1.18–2.27), ischemic heart disease (ARR 1.48, 95% CI 1.16–1.89), and depression (ARR 1.32, 95% CI 1.03–1.70). There was some evidence that angiotensin converting enzyme inhibitors (ARR 1.48, 95% CI 1.13–1.93) were associated with increased risk of Covid-19. Each standard deviation increase in the number of total individuals living in a participant’s locality was associated with increased risk of Covid-19 (ARR 1.14, 95% CI 1.08–1.20). Analyses of genetically inferred blood types confirmed that participants with type A blood had increased odds of Covid-19 compared to participants with type O blood (odds ratio [OR] 1.16, 95% CI 1.01–1.33). A meta-analysis of genomewide association studies across ancestry groups did not reveal any significant loci. Study limitations include confounding by indication, bias due to limited information on early Covid-19 test results, and inability to accurately gauge disease severity. Conclusions When assessing the association of Black race with Covid-19, adjusting for deprivation reduced the relative risk of Covid-19 by 33%. In the context of sociological research, these findings suggest that discrimination in the labor market may play a role in the high relative risk of Covid-19 for Black individuals. In this study, we also confirmed the association of blood type A with Covid-19, among other clinical and regional factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.