The role of grassland ecosystems as net sinks or sources of greenhouse gases (GHGs) is limited by a paucity of information regarding management impacts on the flux of nitrous oxide (N(2)O) and methane (CH(4)). Furthermore, no long-term evaluation of net global warming potential (GWP) for grassland ecosystems in the northern Great Plains (NGP) of North America has been reported. Given this need, we sought to determine net GWP for three grazing management systems located within the NGP. Grazing management systems included two native vegetation pastures (moderately grazed pasture [MGP], heavily grazed pasture [HGP]) and a heavily grazed crested wheatgrass [Agropyron desertorum (Fisch. ex. Link) Schult.] pasture (CWP) near Mandan, ND. Factors evaluated for their contribution to GWP included (i) CO(2) emissions associated with N fertilizer production and application, (ii) literature-derived estimates of CH(4) production for enteric fermentation, (iii) change in soil organic carbon (SOC) over 44 yr using archived soil samples, and (iv) soil-atmosphere N(2)O and CH(4) fluxes over 3 yr using static chamber methodology. Analysis of SOC indicated all pastures to be significant sinks for SOC, with sequestration rates ranging from 0.39 to 0.46 Mg C ha(-1) yr(-1). All pastures were minor sinks for CH(4) (<2.0 kg CH(4)-C ha(-1) yr(-1)). Greater N inputs within CWP contributed to annual N(2)O emission nearly threefold greater than HGP and MGP. Due to differences in stocking rate, CH(4) production from enteric fermentation was nearly threefold less in MGP than CWP and HGP. When factors contributing to net GWP were summed, HGP and MGP were found to serve as net CO(2equiv.) sinks, while CWP was a net CO(2equiv.) source. Values for GWP and GHG intensity, however, indicated net reductions in GHG emissions can be most effectively achieved through moderate stocking rates on native vegetation in the NGP.
The health of livestock, humans, and environments is tied to plant diversity—and associated phytochemical richness—across landscapes. Health is enhanced when livestock forage on phytochemically rich landscapes, is reduced when livestock forage on simple mixture or monoculture pastures or consume high-grain rations in feedlots, and is greatly reduced for people who eat highly processed diets. Circumstantial evidence supports the hypothesis that phytochemical richness of herbivore diets enhances biochemical richness of meat and dairy, which is linked with human and environmental health. Among many roles they play in health, phytochemicals in herbivore diets protect meat and dairy from protein oxidation and lipid peroxidation that cause low-grade systemic inflammation implicated in heart disease and cancer in humans. Yet, epidemiological and ecological studies critical of red meat consumption do not discriminate among meats from livestock fed high-grain rations as opposed to livestock foraging on landscapes of increasing phytochemical richness. The global shift away from phytochemically and biochemically rich wholesome foods to highly processed diets enabled 2.1 billion people to become overweight or obese and increased the incidence of type II diabetes, heart disease, and cancer. Unimpeded, these trends will add to a projected substantial increase in greenhouse gas emissions (GHGE) from producing food and clearing land by 2050. While agriculture contributes one quarter of GHGE, livestock can play a sizable role in climate mitigation. Of 80 ways to alleviate climate change, regenerative agriculture—managed grazing, silvopasture, tree intercropping, conservation agriculture, and farmland restoration—jointly rank number one as ways to sequester GHG. Mitigating the impacts of people in the Anthropocene can be enabled through diet to improve human and environmental health, but that will require profound changes in society. People will have to learn we are members of nature's communities. What we do to them, we do to ourselves. Only by nurturing them can we nurture ourselves.
Conservation agricultural systems rely on three principles to enhance ecosystem services: (1) minimizing soil disturbance, (2) maximizing soil surface cover and (3) stimulating biological activity. In this paper, we explore the concept of diversity and its role in maximizing ecosystem services from managed grasslands and integrated agricultural systems (i.e., integrated crop-livestock-forage systems) at the field and farm level. We also examine trade-offs that may be involved in realizing greater ecosystem services. Previous research on livestock production systems, particularly in pastureland, has shown improvements in herbage productivity and reduced weed invasion with increased forage diversity but little response in terms of animal production. Managing forage diversity in pastureland requires new tools to guide the selection and placement of plant mixtures across a farm according to site suitability and the goals of the producer. Integrated agricultural systems embrace the concept of dynamic cropping systems, which incorporates a long-term strategy of annual crop sequencing that optimizes crop and soil use options to attain production, economic and resource conservation goals by using sound ecological management principles. Integrating dynamic cropping systems with livestock production increases the complexity of management, but also creates synergies among system components that may improve resilience and sustainability while fulfilling multiple ecosystem functions. Diversified conservation agricultural systems can sustain crop and livestock production and provide additional ecosystem services such as soil C storage, efficient nutrient cycling and conservation of biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.