Introduction Victims of severe hypothermia require external rewarming, as self-rewarming through shivering heat production is either minimal or absent. The US Military commonly uses forced-air warming in field hospitals, but these systems require significant power (600–800 W) and are not portable. This study compared the rewarming effectiveness of an electric resistive heating pad system (requiring 80 W) to forced-air rewarming on cold subjects in whom shivering was pharmacologically inhibited. Materials and Methods Shivering was inhibited by intravenous meperidine (1.5 mg/kg), administered during the last 10 min of cold-water immersion. Subjects then exited from the cold water, were dried and lay on a rescue bag for 120 min in one of the following conditions: spontaneous rewarming only (rescue bag closed); electric resistive heating pads (EHP) wrapped from the anterior to posterior torso (rescue bag closed); or, forced-air warming (FAW) over the anterior surface of the body (rescue bag left open and cotton blanket draped over warming blanket). Supplemental meperidine (to a maximum cumulative dose of 3.3 mg/kg) was administered as required during rewarming to suppress shivering. Results Six healthy subjects (3 m, 3 f) were cooled on three different occasions, each in 8°C water to an average nadir core temperature of 34.4 ± 0.6°C (including afterdrop). There were no significant differences between core rewarming rates (spontaneous; 0.6 ± 0.3, FAW; 0.7 ± 0.2, RHP; 0.6 ± 0.2°C/h) or post-cooling afterdrop (spontaneous; 1.9 ± 0.4, FAW; 1.9 ± 0.3, RHP; 1.6 ± 0.2°C) in any of the 3 conditions. There were also no significant differences between metabolic heat production (S; 74 ± 20, FAW; 66 ± 12, RHP; 63 ± 9 W). Total heat gain was greater with FAW (36 W gain) than EHP (13 W gain) and spontaneous (13 W loss) warming (p < 0.005). Conclusions Total heat gain was greater in FAW than both EHP, and spontaneous rewarming conditions, however, there were no observed differences found in rewarming rates, post-cooling afterdrop or metabolic heat production. The electric heat pad system provided similar rewarming performance to a forced-air warming system commonly used in US military field hospitals for hypothermic patients. A battery-powered version of this system would not only relieve pressure on the field hospital power supply but could also potentially allow extending use to locations closer to the field of operations and during transport. Such a system could be studied in larger groups in prospective trials on colder patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.