Controlling receptor-mediated interactions between cells and template surfaces is a central principle in many tissue engineering procedures (1-3). Biomaterial surfaces engineered to present cell adhesion ligands undergo integrin-mediated molecular interactions with cells (1, 4, 5), stimulating cell spreading, and differentiation (6-8). This provides a mechanism for mimicking natural cell-to-matrix interactions. Further sophistication in the control of cell interactions can be achieved by fabricating surfaces on which the spatial distribution of ligands is restricted to micron-scale pattern features (9-14). Patterning technology promises to facilitate spatially controlled tissue engineering with applications in the regeneration of highly organized tissues. These new applications require the formation of ligand patterns on biocompatible and biodegradable templates, which control tissue regeneration processes, before removal by metabolism. We have developed a method of generating micron-scale patterns of any biotinylated ligand on the surface of a biodegradable block copolymer, polylactide-poly(ethylene glycol). The technique achieves control of biomolecule deposition with nanometer precision. Spatial control over cell development has been observed when using these templates to culture bovine aortic endothelial cells and PC12 nerve cells. Furthermore, neurite extension on the biodegradable polymer surface is directed by pattern features composed of peptides containing the IKVAV sequence (15, 16), suggesting that directional control over nerve regeneration on biodegradable biomaterials can be achieved.
The design of biomaterials containing specific ligands on the surface offers the possibility of creating materials that can interact with and potentially control mammalian cell behavior. Biodegradable materials further provide the significant advantage that the polymer will disappear in vivo, obviating long-term negative tissue responses as well as the need for retrieval. In earlier studies we synthesized and characterized arginine-glycine-aspartic acid (RGD) peptide-modified poly(lactic acid-co-lysine) (PLAL). In this study, both bulk properties and surface features have been characterized, with a focus on surface analysis as a means of interpreting observed changes in cell behavior. Bulk peptide attachments were performed using 1,1Ј-carbonyldiimidazole (CDI). Amino groups were measured using colorimetric assays and X-ray photoelectron spectroscopy (XPS). Peptides were measured by incorporating iodine into the peptide as a distinct elemental marker for use with XPS. Typical samples contained 13 ± 4 pmol/cm 2 of amino groups and 4 ± 0.2 pmol/ cm 2 of peptides, as calculated from XPS measurements of nitrogen and iodine. The wettability and crystallinity of the samples were determined by contact angles and differential scanning calorimetry, respectively. Wettability and crystallinity were not altered by the incorporation of lysine or peptides. After incubating bovine aortic endothelial (BAE) cells for 4 h on surfaces with RGD-containing peptides, the mean spread cell area increased from 77 ± 2 m 2 to 405 ± 29 m 2 compared to 116 ± 11 m 2 on poly(lactic acid), 87 ± 4 m 2 on PLAL, and 105 ± 4 m 2 on surfaces with RDG-containing (control) peptides. The significance of this work is that the first synthetic interactive, resorbable biomaterial has been developed, and use of this material to control cell behavior has been demonstrated.
In designing polymers that can act as tissue engineering templates it is beneficial to consider methods of mimicking the natural support structures used by the human body to guide the behavior and development of cells within tissues. The well-known RGD cell adhesion ligand provides a simple mechanism of creating polymer surfaces that mimic the extracellular matrix. This paper considers the methods that have been used to attach such motifs to synthetic polymers. In general there are two strategies: the formation of polymer-peptide hybrid molecules, or the immobilization of the ligand on the fabricated surface of the polymer. The three major synthetic strategies of creating polymer-peptide hybrids are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.