The molecular mechanisms underlying the initiation of innate and adaptive proallergic Th2-type responses in the airways are not well understood. IL-33 is a new member of the IL-1 family of molecules that is implicated in Th2-type responses. Airway exposure of naive mice to a common environmental aeroallergen, the fungus Alternaria alternata, induces rapid release of IL-33 into the airway lumen, followed by innate Th2-type responses. Biologically active IL-33 is constitutively stored in the nuclei of human airway epithelial cells. Exposing these epithelial cells to A. alternata releases IL-33 extracellularly in vitro. Allergen exposure also induces acute extracellular accumulation of a danger signal, ATP; autocrine ATP sustains increases in intracellular Ca2+ concentration and releases IL-33 through activation of P2 purinergic receptors. Pharmacological inhibitors of purinergic receptors or deficiency in the P2Y2 gene abrogate IL-33 release and Th2-type responses in the Alternaria-induced airway inflammation model in naive mice, emphasizing the essential roles for ATP and the P2Y2 receptor. Thus, ATP and purinergic signaling in the respiratory epithelium are critical sensors for airway exposure to airborne allergens, and they may provide novel opportunities to dampen the hypersensitivity response in Th2-type airway diseases such as asthma.
Thymic stromal lymphopoietin (TSLP) is produced by epithelial cells and triggers dendritic cell-mediated Th2-type inflammation. Although TSLP is up-regulated in epithelium of patients with asthma, the factors that control TSLP production have not been studied extensively. Because mouse models suggest roles for protease(s) in Th2-type immune responses, we hypothesized that proteases from airborne allergens may induce TSLP production in a human airway epithelial cell line, BEAS-2B. TSLP mRNA and protein were induced when BEAS-2B cells were exposed to prototypic proteases, namely, trypsin and papain. TSLP induction by trypsin required intact protease activity and also a protease-sensing G protein-coupled receptor, protease-activated receptor (PAR)-2; TSLP induction by papain was partially dependent on PAR-2. In humans, exposure to ubiquitous airborne fungi, such as Alternaria, is implicated in the development and exacerbation of asthma. When BEAS-2B cells or normal human bronchial epithelial cells were exposed to Alternaria extract, TSLP was potently induced. The TSLP-inducing activity of Alternaria was partially blocked by treating the extract with a cysteine protease inhibitor, E-64, or by infecting BEAS-2B cells with small interfering RNA for PAR-2. Protease-induced TSLP production by BEAS-2B cells was enhanced synergistically by IL-4 and abolished by IFN-γ. These findings demonstrate that TSLP expression is induced in airway epithelial cells by exposure to allergen-derived proteases and that PAR-2 is involved in the process. By promoting TSLP production in the airways, proteases associated with airborne allergens may facilitate the development and/or exacerbation of Th2-type airway inflammation, particularly in allergic individuals.
This review summarizes our present understanding of Na-K-Cl cotransport and its physiological role in absorption and secretion of electrolytes and water in epithelial tissues. In the past several years an extensive literature about this cotransporter has developed due to its widespread distribution in a variety of cell types and its essential role in fluid and electrolyte transport in several epithelial tissues. We summarize this literature and speculate on the future characterization of this transport system. Although this review focuses on cotransport as it relates to absorptive and secretory processes in epithelia, important information concerning the pharmacology, stoichiometry, and regulation of Na-K-Cl cotransport in nonepithelial systems (i.e., erythrocytes, fibroblasts, squid axon, etc.) has been included to supplement areas that are less well established in the epithelial literature.
Alveolar epithelial cells were isolated from adult Sprague-Dawley rats and grown to confluence on membrane filters. Most of the basal short-circuit current ( I sc; 60%) was inhibited by amiloride (IC50 0.96 μM) or benzamil (IC50 0.5 μM). Basolateral addition of terbutaline (2 μM) produced a rapid decrease in I sc, followed by a slow recovery back to its initial amplitude. When Cl− was replaced with methanesulfonic acid, the basal I sc was reduced and the response to terbutaline was inhibited. In permeabilized monolayer experiments, both terbutaline and amiloride produced sustained decreases in current. The current-voltage relationship of the terbutaline-sensitive current had a reversal potential of −28 mV. Increasing Cl− concentration in the basolateral solution shifted the reversal potential to more depolarized voltages. These results were consistent with the existence of a terbutaline-activated Cl− conductance in the apical membrane. Terbutaline did not increase the amiloride-sensitive Na+ conductance. We conclude that β-adrenergic stimulation of adult alveolar epithelial cells results in an increase in apical Cl− permeability and that amiloride-sensitive Na+ channels are not directly affected by this stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.