Polycapillary optics, i.e. shaped arrays consisting of hundreds of thousands of hollow glass capillary tubes, can be used to redirect, collimate or focus X-ray beams. X-rays emitted over a large angular range from conventional laboratory-based sources can be transformed into a beam with a small angular divergence or focused onto a small sample or sample area. Convergent beams of X-rays, with convergence angles as high as 15 , have been produced using polycapillary X-ray optics. Focused-spot sizes as small as 20 mm have been achieved, with¯ux densities two orders of magnitude larger than that produced by pinhole collimation. This results in a comparable decrease in data collection times because of the increase in direct-beam intensity and reciprocal-space coverage. In addition, the optics can be employed to reduce background and provide more convenient alignment geometries. The inverse dependence of the critical angle for total external re¯ection on photon energy results in suppression of high-energy photons. This effect can be employed to allow the use of higher tube potentials to increase the characteristic line emission and has also been employed to increase signi®cantly the K/K ratio in Cu radiation. Measurements of X-ray diffraction data and crystallographic analyses have been performed for systems ranging from elemental crystals to proteins. Data from a lysozyme protein`standard' with a slightly convergent beam, taken in 3 min per frame with 2 oscillation with a 2.8 kW source, re®ned to an intensity variance of 5% compared to a standard data set. High-quality data were also obtained with a 0.03 kW ®xed-anode source and a 2 convergent lens in 5 min per frame.
A hard-x-ray telescope is successfully produced for balloon observations by making use of depth-graded multilayers, or so-called supermirrors, with platinum-carbon (Pt/C) layer pairs. It consists of four quadrant units assembled in an optical configuration with a diameter of 40 cm and a focal length of 8 m. Each quadrant is made of 510 pieces of coaxially and confocally aligned supermirrors that significantly enhance the sensitivity in an energy range of 20-40 keV. The configuration of the telescope is similar to the x-ray telescope onboard Astro-E, but with a longer focal length. The reflectivity of supermirrors is of the order of 40% in the energy range concerned at a grazing angle of 0.2 deg. The effective area of a fully assembled telescope is 50 cm2 at 30 keV. The angular resolution is 2.37 arc min at half-power diameter 8.0 keV. The field of view is 12.6 arc min in the hard-x-ray region, depending somewhat on x-ray energies. We discuss these characteristics, taking into account the figure errors of reflectors and their optical alignment in the telescope assembly. This hard-x-ray telescope is unanimously afforded in the International Focusing Optics Collaboration for muCrab Sensitivity balloon experiment.
The International Focusing Optics Collaboration for microCrab Sensitivity (InFOCmicroS) balloonborne hard x-ray telescope incorporates graded Pt/C multilayers replicated onto segmented Al foils to obtain the significant effective area at energies previously inaccessible to x-ray optics. Reflectivity measurements of individual foils demonstrate our capability to produce a mass quantity of multilayered foils with a rms roughness of 0.5 nm. The effective area of the completed mirror is 78 and 22 cm2 at 20 and 40 keV, respectively. The measured half-power diameter is 2.0 +/- 0.6 are min (90% confidence). The successful completion of this mirror demonstrates its applicability to future x-ray telescopes such as Constellation-X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.