Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by variable cognitive impairment and behavioral disturbances such as exaggerated fear, anxiety and gaze avoidance. Consistent with this, findings from human brain imaging studies suggest dysfunction of the amygdala. Underlying alterations in amygdala synaptic function in the Fmr1 knock-out (KO) mouse model of FXS, however, remain largely unexplored. Utilizing a combination of approaches, we uncover profound alterations in inhibitory neurotransmission in the amygdala of Fmr1 KO mice. We demonstrate a dramatic reduction in the frequency and amplitude of phasic IPSCs, tonic inhibitory currents, as well as in the number of inhibitory synapses in Fmr1 KO mice. Furthermore, we observe significant alterations in GABA availability, both intracellularly and at the synaptic cleft. Together, these findings identify abnormalities in basal and action potentialdependent inhibitory neurotransmission. Additionally, we reveal a significant neuronal hyperexcitability in principal neurons of the amygdala in Fmr1 KO mice, which is strikingly rescued by pharmacological augmentation of tonic inhibitory tone using the GABA agonist gaboxadol (THIP). Thus, our study reveals relevant inhibitory synaptic abnormalities in the amygdala in the Fmr1 KO brain and supports the notion that pharmacological approaches targeting the GABAergic system may be a viable therapeutic approach toward correcting amygdala-based symptoms in FXS.
BackgroundThe objective of this systematic review and meta-analysis was to assess the relationship between the chloride content of intravenous resuscitation fluids and patient outcomes in the perioperative or intensive care setting.MethodsSystematic searches were performed of PubMed/MEDLINE, Embase and Cochrane Library (CENTRAL) databases in accordance with PRISMA guidelines. Randomized clinical trials, controlled clinical trials and observational studies were included if they compared outcomes in acutely ill or surgical patients receiving either high-chloride (ion concentration greater than 111 mmol/l up to and including 154 mmol/l) or lower-chloride (concentration 111 mmol/l or less) crystalloids for resuscitation. Endpoints examined were mortality, measures of kidney function, serum chloride, hyperchloraemia/metabolic acidosis, blood transfusion volume, mechanical ventilation time, and length of hospital and intensive care unit stay. Risk ratios (RRs), mean differences (MDs) or standardized mean differences (SMDs) and confidence intervals were calculated using fixed-effect modelling.ResultsThe search identified 21 studies involving 6253 patients. High-chloride fluids did not affect mortality but were associated with a significantly higher risk of acute kidney injury (RR 1·64, 95 per cent c.i. 1·27 to 2·13; P < 0·001) and hyperchloraemia/metabolic acidosis (RR 2·87, 1·95 to 4·21; P < 0·001). High-chloride fluids were also associated with greater serum chloride (MD 3·70 (95 per cent c.i. 3·36 to 4·04) mmol/l; P < 0·001), blood transfusion volume (SMD 0·35, 0·07 to 0·63; P = 0·014) and mechanical ventilation time (SMD 0·15, 0·08 to 0·23; P < 0·001). Sensitivity analyses excluding heavily weighted studies resulted in non-statistically significant effects for acute kidney injury and mechanical ventilation time.ConclusionA weak but significant association between higher chloride content fluids and unfavourable outcomes was found, but mortality was unaffected by chloride content.
PurposeRecent data suggest that both elevated serum chloride levels and volume overload may be harmful during fluid resuscitation. The purpose of this study was to examine the relationship between the intravenous chloride load and in-hospital mortality among patients with systemic inflammatory response syndrome (SIRS), with and without adjustment for the crystalloid volume administered.MethodsWe conducted a retrospective analysis of 109,836 patients ≥18 years old that met criteria for SIRS and received fluid resuscitation with crystalloids. We examined the association between changes in serum chloride concentration, the administered chloride load and fluid volume, and the ‘volume-adjusted chloride load’ and in-hospital mortality.ResultsIn general, increases in the serum chloride concentration were associated with increased mortality. Mortality was lowest (3.7 %) among patients with minimal increases in serum chloride concentration (0–10 mmol/L) and when the total administered chloride load was low (3.5 % among patients receiving 100–200 mmol; P < 0.05 versus patients receiving ≥500 mmol). After controlling for crystalloid fluid volume, mortality was lowest (2.6 %) when the volume-adjusted chloride load was 105–115 mmol/L. With adjustment for severity of illness, the odds of mortality increased (1.094, 95 % CI 1.062, 1.127) with increasing volume-adjusted chloride load (≥105 mmol/L).ConclusionsAmong patients with SIRS, a fluid resuscitation strategy employing lower chloride loads was associated with lower in-hospital mortality. This association was independent of the total fluid volume administered and remained significant after adjustment for severity of illness, supporting the hypothesis that crystalloids with lower chloride content may be preferable for managing patients with SIRS.Electronic supplementary materialThe online version of this article (doi:10.1007/s00134-014-3505-3) contains supplementary material, which is available to authorized users.
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.