The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be 2.61 +0.17 −0.16 R ⊕ , and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7 +2.2 −1.9 M ⊕ . HD 21749b contributes to the TESS Level 1 Science Requirement of * This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
We report the detection of a transiting Earth-size planet around GJ 357, a nearby M2.5 V star, using data from the Transiting Exoplanet Survey Satellite (TESS). GJ 357 b (TOI-562.01) is a transiting, hot, Earth-sized planet (Teq = 525 ± 11 K) with a radius of Rb = 1.217 ± 0.084 R⊕ and an orbital period of Pb = 3.93 d. Precise stellar radial velocities from CARMENES and PFS, as well as archival data from HIRES, UVES, and HARPS also display a 3.93-day periodicity, confirming the planetary nature and leading to a planetary mass of Mb = 1.84 ± 0.31 M⊕. In addition to the radial velocity signal for GJ 357 b, more periodicities are present in the data indicating the presence of two further planets in the system: GJ 357 c, with a minimum mass of Mc = 3.40 ± 0.46 M⊕ in a 9.12 d orbit, and GJ 357 d, with a minimum mass of Md = 6.1 ± 1.0 M⊕ in a 55.7 d orbit inside the habitable zone. The host is relatively inactive and exhibits a photometric rotation period of Prot = 78 ± 2 d. GJ 357 b isto date the second closest transiting planet to the Sun, making it a prime target for further investigations such as transmission spectroscopy. Therefore, GJ 357 b represents one of the best terrestrial planets suitable for atmospheric characterization with the upcoming JWST and ground-based ELTs.
We present the discovery and characterization of five hot and warm Jupiters—TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960)—based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01–1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars ( g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R P > 1.7 R J, possibly a result of its host star’s evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of M J and a statistically significant, nonzero orbital eccentricity of e = . This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA’s TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
TOI-216 hosts a pair of warm, large exoplanets discovered by the TESS mission. These planets were found to be in or near the 2:1 resonance, and both of them exhibit transit timing variations (TTVs). Precise characterization of the planets' masses and radii, orbital properties, and resonant behavior can test theories for the origins of planets orbiting close to their stars. Previous characterization of the system using the first six sectors of TESS data suffered from a degeneracy between planet mass and orbital eccentricity. Radial-velocity measurements using HARPS, FEROS, and the Planet Finder Spectrograph break that degeneracy, and an expanded TTV baseline from TESS and an ongoing ground-based transit observing campaign increase the precision of the mass and eccentricity measurements. We determine that TOI-216c is a warm Jupiter, TOI-216b is an eccentric warm Neptune, and that they librate in 2:1 resonance with a moderate libration amplitude of -+ 60 2 2 deg, a small but significant free
Phase-curve measurements provide a global view of the composition, thermal structure, and dynamics of exoplanet atmospheres. Although most of the dozens of phase-curve measurements made to date are of large, massive hot Jupiters, there is considerable interest in probing the atmospheres of the smaller planets that are the more typical endproduct of the planet formation process. One such planet that is favorable for these studies is the ultrahot Neptune LTT 9779b, a rare denizen of the Neptune desert. A companion paper presents the planet's secondary eclipses and dayside thermal emission spectrum; in this work we describe the planet's optical and infrared phase curves, characterized using a combination of Spitzer and Transiting Exoplanet Survey Satellite (TESS) photometry. We detect LTT 9779b's thermal phase variations at 4.5 μm, finding a phase amplitude of 358±106ppm and no significant phase offset, with a longitude of peak emission occurring −10°±21°east of the substellar point. Combined with our secondary eclipse observations, these phase-curve measurements imply a 4.5 μm dayside brightness temperature of 1800±120K, a nightside brightness temperature of 700±430K (<1350 K at 2σconfidence), and a day-night brightness temperature contrast of 1110±460K. We compare our data to the predictions of 3D general circulation models calculated at multiple metallicity levels and to similar observations of hot Jupiters experiencing similar levels of stellar irradiation. Though not conclusive, our measurement of its small 4.5 μm phase offset, the relatively large amplitude of the phase variation, and the qualitative differences between our target's dayside emission spectrum and those of hot Jupiters of similar temperatures all suggest a supersolar atmospheric metallicity for LTT 9779b, as might be expected given its size and mass. Finally, we measure the planet's transits at both 3.6 μm and 4.5 μm, providing a refined ephemeris (P=0.79207022±0.00000069days, T 0 =2458783.51636±0.00027, BJD TDB ) that will enable efficient scheduling of future observations to further characterize the atmosphere of this intriguing planet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.