In fluvio-tidal settings, the sediment is dominantly derived from the river systems. However, the importance of landward tidal transport of sediment in tidally influenced sedimentary environments is difficult to assess, particularly in the rock record. This problem is addressed using two intervals within the Lower Cretaceous McMurray Formation, each representing a distinct inclined heterolithic stratification motif. The ichnological variation between the heterolithic intervals is analyzed to determine which lithosomes are associated with brackish-water (tidally influenced) colonization windows. From this, the relative fluvial influence responsible for the deposition of the fine and coarse members can be determined. Both of the inclined heterolithic stratification fabrics studied record the deposition of fluvio-tidal point bars wherein the heterolithic bedding represents variations in river discharge. The first fabric comprises inclined heterolithic stratification in which bioturbation only occurs in mudstone beds. This fabric indicates that deposition occurred in more proximal positions within a fluvio-tidal system (i.e. the outermost inner to middle estuary or distributary channels). In this example sand deposition is interpreted to represent high-energy, freshwater dune migration within a fluvial-dominated setting, whereas mud beds reflect brackish-water suspension deposition during times of low river discharge. The second fabric, which is interpreted to have developed in more distal depositional positions (i.e. the middle estuary or seaward of the turbidity maximum in deltas), consists of inclined heterolithic stratification with laminated mudstone and bioturbated sandstone. In these inclined heterolithic stratification successions the mudstone beds were deposited under the influence of freshwater and heightened sedimentation rates, whereas bioturbated sandstone was colonized under brackish-water conditions and in the presence of tidally facilitated sediment transport. In both examples, the bioturbated lithosomes are related to colonization windows that indicate the predominance at that time of marine or tidally influenced processes over fluvial processes.
Low-level drone photogrammetry is a technique that allows for the construction of surface orthomosaics and elevation models. Despite being used for a wide range of geological applications, these types of datasets have not yet been explored from a neoichnological perspective. This study uses three examples of tidal flats from the Bay of Fundy to demonstrate the usefulness of 3D photogrammetry in the collection of high-resolution neoichnological datasets. The first site is a bar top along the Petitcodiac River that is situated between a salt marsh and tidal channel margin. The second site, which is located along the Shepody River, represents a laterally accreting channel margin and thus has a relatively high relief. In contrast, the final site comprises a gently sloping tidal flat that is far from the influence of a major tidal channel. Spatial analysis of the shorebird tracks at each site was used to assess the relationship between shorebird track distributions (e.g., track density, stride orientation, stride length) and various environmental and ecological factors (e.g., topography, tidal current direction, invertebrate prey distributions). Additionally, morphological analysis of the tracks was used to assess variations in substrate cohesiveness, which is the environmental factor that exhibited the most variability at the study locations. The track record at each site represents a shorebird flock that traversed the tidal flats in such a way as to optimize foraging success. As a result, the abundance and availability of macrobenthic invertebrate prey was the primary factor contributing to shorebird track density. This paper aims to assess local-scale variations in tidal flat substrate cohesiveness and provide context for the interpretation of fossilized shorebird trackways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.