Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the surface of a set of NPs with various surface chemistries and electric charges. Our results indicate that the degree of protein coverage and the composition of the adsorbed proteins on the NPs' surface depend on the temperature at which the protein corona is formed. Also, the uptake of NPs is affected by the temperature. Temperature is, thus, an important parameter that needs to be carefully controlled in quantitative studies of bionano interactions.
Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues1. Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechano-sensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and for the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy.
Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction. In comparison to infarcted hearts with no treatment, hearts bearing patches preserved contractility and significantly protected the cardiac tissue from injury at the anatomical and functional levels. This improvement was accompanied by attenuated left ventricular remodeling, diminished fibrosis, and formation of a network of interconnected blood vessels within the infarct. Histological and immunostaining confirmed integration of the patch with native cardiac cells including fibroblasts, smooth muscle cells, epicardial cells, and immature cardiomyocytes. In summary, an acellular biomaterial with specific biomechanical properties promotes the endogenous capacity of the infarcted myocardium to attenuate remodeling and improve heart function following myocardial infarction.
Rationale The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging (BLI) were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and pre-cardiac properties. In this study, the restorative effects of three AMC-derived sub-populations were examined in a murine myocardial injury model: 1) unselected AMCs (uAMCs), 2) ckit+AMCs (c+AMCs), and 3) AMC-derived iPSCs (MiPSCs). Objective Determine the differential restorative effects of the AMC-derived sub-populations in the murine myocardial injury model using multi-modality imaging. Methods and Results SCID mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: 1) normal saline control (n=14), 2) uAMCs (n=10), 3) c+AMCs (n=13), and 4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular (LV) function while BLI assessed stem cell engraftment over a four-week period. Immunohistological labeling and RT-PCR of the explanted myocardium were performed. The uAMC and c+AMC treated mice demonstrated transient LV functional improvement. However, the MiPSCs exhibited a significantly greater increase in LV function compared to all the other groups during the entire four-week period. LV functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSCs treated animals lacked any evidence of de novo cardiac differentiation. Conclusion The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.