Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the “reactivity hypothesis” suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. “Modality” has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors.
Context: Nutrition education aims to enhance knowledge and improve dietary intake in athletes. Understanding athletes' nutrition knowledge and its influence on dietary intake will inform nutrition-education programs in this population. Purpose: To systematically review the level of nutrition knowledge in athletes, benchmark this against nonathlete comparison groups, and determine the impact of nutrition knowledge on dietary intake. Methods: An extensive literature search from the earliest record to March 2010 using the terms nutrition knowledge or diet knowledge and athlete or sport was conducted. Included studies recruited able or physically disabled, male or female, competitive (recreational or elite) athletes over the age of 13 yr. Quantitative assessment of knowledge and, if available, diet intake was required. Because of variability in the assessment of nutrition knowledge and dietary intake, meta-analysis was not conducted. Results: Twenty-nine studies (17 published before 2000) measuring nutrition knowledge (7 including a nonathlete comparison group) met inclusion criteria. Athletes' knowledge was equal to or better than that of nonathletes but lower than comparison groups including nutrition students. When found statistically significant, knowledge was greater in females than males. A weak (r < .44), positive association between knowledge and dietary intake was reported in 5 of 9 studies assessing this. Common flaws in articles included inadequate statistical reporting, instrument validation, and benchmarking. Conclusion: The nutrition knowledge of athletes and its impact on their dietary intake is equivocal. There is a need for high-quality, contemporary research using validated tools to measure nutrition knowledge and its impact on dietary intake.
Hackett, DA, Cobley, SP, Davies, TB, Michael, SW, and Halaki, M. Accuracy in estimating repetitions to failure during resistance exercise. J Strength Cond Res 31(8): 2162-2168, 2017-The primary aim of this study was to assess the accuracy in estimation of repetitions to failure (ERF) during resistance exercise. Furthermore, this investigation examined whether the accuracy in ERF was affected by training status, sex, or exercise type. Eighty-one adults (men, n = 53 and women, n = 28) with broad range of resistance training experience participated in this study. Subjects performed up to 10 sets of 10 repetitions at 70% 1 repetition maximum (1RM) and 80% 1RM for the chest press and leg press, respectively. At the completion of each set, subjects reported their ERF and then continued repetitions to failure to determine actual repetitions to failure (ARF). The accuracy (amount of error) of ERF was determined over an ARF 0-10. Significant differences were found for error of ERF among ARF (p < 0.001), with the error of ERF ∼1 repetition at ARF 0-5 compared with >2 repetitions at ARF 7-10. Greater accuracy was found for the chest press compared with leg press, with the error of ERF ≤1 repetition for ARF 0-5 and ARF 0-3, respectively (p = 0.012). Men were found to be more accurate than women at specific ARFs for the leg press (p = 0.008), whereas no interaction was found for the chest press. Resistance training experience did not affect the accuracy in ERF. These results suggest that resistance trainers can accurately estimate repetitions to failure when close to failure and that ERF could importantly be practically used for prescription and monitoring of resistance exercise.
Preceding exercise intensity has a graded effect on recovery HRV measures reflecting cardiac vagal activity, even after correcting for the underlying HR. The immediate recovery following exercise is a potentially useful period to investigate autonomic activity, as multiple levels of autonomic activity can be clearly differentiated between using HRV. When investigating post-exercise HRV it is critical to account for the relative exercise intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.