The cranial osteology of the small theropod dinosaur Proceratosaurus from the Bathonian of Minchinhampton, England, is described in detail, based on new preparation and computed tomography (CT) scan images of the type, and only known, specimen. Proceratosaurus is an unusual theropod with markedly enlarged external nares and a cranial crest starting at the premaxillary-nasal junction. The skull is highly pneumatic, with pneumatized nasals, jugals, and maxillae, as well as a highly pneumatic braincase, featuring basisphenoid, anterior tympanic, basipterygoid, and carotid recesses. The dentition is unusual, with small premaxillary teeth and much larger lateral teeth, with a pronounced size difference of the serrations between the mesial and distal carina. The first dentary tooth is somewhat procumbent and flexed anteriorly. Phylogenetic analysis places Proceratosaurus in the Tyrannosauroidea, in a monophyletic clade Proceratosauridae, together with the Oxfordian Chinese taxon Guanlong. The Bathonian age of Proceratosaurus extends the origin of all clades of basal coelurosaurs back into the Middle Jurassic, and provides evidence for an early, Laurasia-wide, dispersal of the Tyrannosauroidea during the late Middle to Late Jurassic.
A major gap in our knowledge of the evolution of marsupial mammals concerns the Paleogene of the northern continents, a critical time and place to link the early history of metatherians in Asia and North America with the more recent diversification in South America and Australia. We studied new exceptionally well-preserved partial skeletons of the Early Oligocene fossil Herpetotherium from the White River Formation in Wyoming, which allowed us to test the relationships of this taxon and examine its adaptations. Herpetotheriidae, with a fossil record extending from the Cretaceous to the Miocene, has traditionally been allied with opossums (Didelphidae) based on fragmentary material, mainly dentitions. Analysis of the new material reveals that several aspects of the cranial and postcranial anatomy, some of which suggests a terrestrial lifestyle, distinguish Herpetotherium from opossums. We found that Herpetotherium is the sister group to the crown group Marsupialia and is not a stem didelphid. Combination of the new palaeontological data with molecular divergence estimates, suggests the presence of a long undocumented gap in the fossil record of opossums extending some 45Myr from the Early Miocene to the Cretaceous.
The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic-Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.
Heterodontosaurids are poorly understood early ornithischian dinosaurs with extensive geographic and stratigraphic ranges. The group is best known from the Lower Jurassic upper ‘Stormberg Group’ (upper Elliot and Clarens formations) of southern Africa, previously represented by at least three distinct species and ten described specimens. This paper describes four additional heterodontosaurid specimens from southern Africa. A partial skull of a large individual of Heterodontosaurus tucki (NM QR 1788) is approximately 70 longer than that of the type specimen of Heterodontosaurus, and provides new information on allometric changes in mandibular morphology during growth in this taxon. It is the largest known heterodontosaurid cranial specimen, representing an individual approximately 1·75 metres in length, and perhaps 10 kg in body mass. NHMUK R14161 is a partial skull that appears to differ from all other heterodontosaurids on the basis of the proportions of the dentaries, and may represent an unnamed new taxon. Two additional partial skulls (NHMUK RU C68, NHMUK RU69) are referred to cf. Lycorhinus. At least four, and possibly five or more, heterodontosaurid species are present in the upper ‘Stormberg’. This high diversity may have been achieved by dietary niche partitioning, and suggests an adaptive radiation of small-bodied ornithischians following the end Triassic extinctions.
Dinosaur remains are exceptionally scarce in northern South America and Jurassic faunas from this area are particularly poorly known. We provide descriptions of new dinosaur specimens from a bonebed in the La Quinta Formation (Early or Middle Jurassic) of western Venezuela. The specimens are disarticulated and associations of elements are rare, but at least two distinct taxa appear to be present. Ornithischian dinosaurs are identifi ed on the basis of isolated teeth and a distal tibia. The teeth represent a non-cerapodan basal ornithischian and possess a unique combination of character states, suggesting that they pertain to a new and unnamed taxon. Other remains represent an indeterminate basal saurischian (based on an ilium) and indeterminate dinosaurs (caudal vertebrae and a femur). The apparently plesiomorphic morphology of many of the dinosaurian remains is consistent with suggestions of an Early or Middle Jurassic age for the La Quinta Formation. Previous reports of the basal ornithischian Lesothosaurus sp. from the La Quinta Formation cannot be substantiated on the basis of available data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.