E2F-2 is a retinoblastoma (Rb)-regulated transcription factor induced during terminal erythroid maturation. Cyclin E-mediated Rb hyperphosphorylation induces E2F transcriptional activator functions. We previously reported that deregulated cyclin E activity causes defective terminal maturation of nucleated erythroblasts in vivo. Here, we found that these defects are normalized by E2F-2 deletion; however, anemia in mice with deregulated cyclin E is not improved by E2F-2-loss, which itself causes reduced peripheral red blood cell (RBC) counts without altering relative abundances of erythroblast subpopulations. To determine how E2F-2 regulates RBC production, we comprehensively studied erythropoiesis using knockout mice and hematopoietic progenitors. We found that efficient stress erythropoiesis in vivo requires E2F-2, and we also identified an unappreciated role for E2F-2 in erythroblast enucleation. In particular, E2F-2 deletion impairs nuclear condensation, a morphological feature of maturing erythroblasts. Transcriptome profiling of E2F-2-null, mature erythroblasts demonstrated widespread changes in gene expression. Notably, we identified citron Rho-interacting kinase (CRIK), which has known functions in mitosis and cytokinesis, as induced in erythroblasts in an E2F-2-dependent manner, and we found that CRIK activity promotes efficient erythroblast enucleation and nuclear condensation. Together, our data reveal novel, lineage-specific functions for E2F-2 and suggest that some mitotic kinases have specialized roles supporting enucleation of maturing erythroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.