Robots exhibit flexible behavior largely in proportion to their degree of knowledge about the world. Such knowledge is often meticulously hand-coded for a narrow class of tasks, limiting the scope of possible robot competencies. Thus, the primary limiting factor of robot capabilities is often not the physical attributes of the robot, but the limited time and skill of expert programmers. One way to deal with the vast number of situations and environments that robots face outside the laboratory is to provide users with simple methods for programming robots that do not require the skill of an expert.For this reason, learning from demonstration (LfD) has become a popular alternative to traditional robot programming methods, aiming to provide a natural mechanism for quickly teaching robots. By simply showing a robot how to perform a task, users can easily demonstrate new tasks as needed, without any special knowledge about the robot. Unfortunately, LfD often yields little knowledge about the world, and thus lacks robust generalization capabilities, especially for complex, multi-step tasks.We present a series of algorithms that draw from recent advances in Bayesian nonparametric statistics and control theory to automatically detect and leverage repeated structure at multiple levels of abstraction in demonstration data. The discovery of repeated structure provides critical insights into task invariants, features of importance, high-level task structure, and appropriate skills for the task. This culminates in the discovery of a finite-state representation of the task, comprised of grounded skills that are flexible and reusable, providing robust generalization and transfer in complex, multistep robotic tasks. These algorithms are tested and evaluated using a PR2 mobile manipulator, showing success on several complex real-world tasks, such as furniture assembly.
We present a novel method for segmenting demonstrations, recognizing repeated skills, and generalizing complex tasks from unstructured demonstrations. This method combines many of the advantages of recent automatic segmentation methods for learning from demonstration into a single principled, integrated framework. Specifically, we use the Beta Process Autoregressive Hidden Markov Model and Dynamic Movement Primitives to learn and generalize a multi-step task on the PR2 mobile manipulator and to demonstrate the potential of our framework to learn a large library of skills over time.
Reinforcement learning algorithms discover policies that maximize reward, but do not necessarily guarantee safety during learning or execution phases. We introduce a new approach to learn optimal policies while enforcing properties expressed in temporal logic. To this end, given the temporal logic specification that is to be obeyed by the learning system, we propose to synthesize a reactive system called a shield. The shield monitors the actions from the learner and corrects them only if the chosen action causes a violation of the specification. We discuss which requirements a shield must meet to preserve the convergence guarantees of the learner. Finally, we demonstrate the versatility of our approach on several challenging reinforcement learning scenarios.
Inverse reinforcement learning (IRL) infers a reward function from demonstrations, allowing for policy improvement and generalization. However, despite much recent interest in IRL, little work has been done to understand the minimum set of demonstrations needed to teach a specific sequential decisionmaking task. We formalize the problem of finding maximally informative demonstrations for IRL as a machine teaching problem where the goal is to find the minimum number of demonstrations needed to specify the reward equivalence class of the demonstrator. We extend previous work on algorithmic teaching for sequential decision-making tasks by showing a reduction to the set cover problem which enables an efficient approximation algorithm for determining the set of maximallyinformative demonstrations. We apply our proposed machine teaching algorithm to two novel applications: providing a lower bound on the number of queries needed to learn a policy using active IRL and developing a novel IRL algorithm that can learn more efficiently from informative demonstrations than a standard IRL approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.