The increased Bax/Bcl-2 ratio in the newborn myocardium suggests a proapoptotic state that is manifested by greater TUNEL staining, cytochrome c release, and cleavage of caspase 3. Increased apoptosis signal-regulating kinase 1 activity suggests greater oxidative stress, immature mechanisms to ameliorate oxidative stress, or both in the neonatal myocardium. Mitochondrial release of cytochrome c suggests that apoptosis-related mitochondrial dysfunction might contribute to early postoperative myocardial dysfunction in the neonate.
In a clinically relevant model of neonatal cardioplegic arrest, increased apoptotic cell death is present 6 hours after reperfusion, and both proapoptotic and antiapoptotic responses are triggered. The clinical implications of apoptosis after cardioplegic arrest remain undetermined.
When choosing cannulae for cardiac surgery the two most important factors to be considered are the proposed procedure and the patient anatomy. These factors are especially crucial in paediatric patients with congenital heart disease. A 3-year-old, 14-kg male presented to the University of Iowa Hospitals and Clinics with dextro-transposition of the great arteries, atrioventricular canal, left pulmonary stenosis, azygous continuation, bilateral superior vena cavae, partial anomalous pulmonary venous return, left aortic arch and status post-right Blalock-Taussing shunt. The complex anatomy presented a surgical dilemma. The course of surgical intervention was determined, a variation of the modified Fontan procedure, and the anatomy of the patient was directly viewed. The surgeon concluded that four venous cannulae were required to provide adequate venous return for the cardiopulmonary bypass (CPB) circuit and a bloodless surgical field. The operation was successfully performed under mild hypothermia with no complications. The patient fully recovered with only mild restrictions on his activity level. This case acutely illustrates the importance of anatomical and procedural awareness when choosing cannulae and cannulation sites for CPB in paediatric patients with congenital heart disease.
Many centers advocate the use of a standby wet-primed extracorporeal membrane oxygenation (ECMO) circuit for rapid deployment during cardiopulmonary resuscitation. However, concerns with regard to the potential health hazards associated with the release of the plasticizer di-2(ethylhexyl)phthalate (DEHP) from the polyvinyl chloride (PVC) tubing exist. The purpose of this study was to determine the time course of DEHP release from a preprimed ECMO circuit and to evaluate the effect of PVC tubing coatings on DEHP release. Seven circuits including three uncoated (Medtronic, Medtronic with albumin, and Medtronic Super Tygon) and four attenuated surfaces (Carmeda, COBE Smart, Medtronic Trillium, and Terumo x-coated) were primed with Plasmalyte A. Samples of the circuit prime were collected over a period of 2 weeks and were analyzed for DEHP, using gas chromatography. Results were compared by using a two-tailed t test. One coated (Carmeda) and all three uncoated circuits leached DEHP. The greatest amount of leaching occurred in the uncoated Medtronic tubing with albumin. The COBE Smart, Medtronic Trillium, and Terumo x-coated circuits had undetectable amounts of DEHP (p = 0.006 vs Medtronic uncoated). Prepriming an ECMO circuit composed of uncoated PVC tubing is associated with DEHP release. Using coated PVC tubing appears to eliminate DEHP release over a 2-week period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.