Low‐density rural home development is the fastest‐growing form of land use in the United States since 1950. This “exurban” development (∼6–25 homes/km2) includes urban fringe development (UFD) on the periphery of cities and rural residential development (RRD) in rural areas attractive in natural amenities. This paper synthesizes current knowledge on the effects of UFD and RRD. We present two case studies and examine the patterns of biodiversity response and the ecological mechanisms that may underlie these responses. We found that many native species have reduced survival and reproduction near homes, and native species richness often drops with increased exurban densities. Exotic species, some human‐adapted native species, and species from early successional stages often increase with exurban development. These relationships are sometimes nonlinear, with sharp thresholds in biodiversity response. These effects may be manifest for several decades following exurban development, so that biodiversity is likely still responding to the wave of exurban expansion that has occurred since 1950. The location of exurban development is often nonrandom relative to biodiversity because both are influenced by biophysical factors. Consequently, the effects on biodiversity may be disproportionately large relative to the area of exurban development. RRD is more likely than UFD to occur near public lands; hence it may have a larger influence on nature reserves and wilderness species. The ecological mechanisms that may underlie these responses involve alteration of habitat, ecological processes, biotic interactions, and increased human disturbance. Research on the patterns and mechanisms of biodiversity remains underdeveloped, and comparative and experimental studies are needed. Knowledge resulting from such studies will increase our ability to understand, manage, and mitigate negative impacts on biodiversity.
Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities.
Summary1. Arboreal ants are both diverse and ecologically dominant in the tropics. Such ecologically important groups are likely to be particularly useful in ongoing empirical efforts to understand the processes that regulate species diversity and coexistence. 2. Our study addresses how access to tree-based resources and the diversity of pre-existing nesting cavities affect species diversity and coexistence in tropical arboreal ant assemblages. We focus on assemblage-level responses to these variables at local scales. We first surveyed arboreal ant diversity across three naturally occurring levels of canopy connectivity and a gradient of tree size. We then conducted whole-tree experimental manipulations of canopy connectivity and the diversity of cavity entrance sizes. All work was conducted in the Brazilian savanna or 'cerrado'. 3. Our survey suggested that species richness was equivalent among levels of connectivity. However, there was a consistent trend of lower species density with low canopy connectivity. This was confirmed at the scale of individual trees, with low-connectivity trees having significantly fewer species across all tree sizes. Our experiment demonstrated directly that low canopy connectivity results in significantly fewer species coexisting per tree. 4. A diverse array of cavity entrance sizes did not significantly increase overall species per tree. Nevertheless, cavity diversity did significantly increase the species using new cavities on each tree, the species per tree unique to new cavities, total species using new cavities, and total cavity use. The populations of occupied cavities were consistent with newly founded colonies and new nests of established colonies from other trees. Cavity diversity thus appears to greatly affect new colony founding and colony growth. 5. These results contribute strong evidence that greater resource access and greater cavity diversity have positive effects on species coexistence in local arboreal ant assemblages. More generally, these positive effects are broadly consistent with niche differentiation promoting local species coexistence in diverse arboreal ant assemblages. The contributions of this study to the understanding of the processes of species coexistence are discussed, along with the potential of the focal system for future work on this issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.