Mutational activation of ras has been found in many types of human cancers, including a greater than 50% incidence in colon and about 90% in pancreatic carcinomas. The activity of both native and oncogenic ras proteins requires a series of post-translational processing steps. The first event in this process is the farnesylation of a cysteine residue located in the fourth position from the carboxyl terminus of the ras protein, catalyzed by the enzyme farnesyltransferase (FTase). Inhibitors of FTase are potential candidates for development as antitumor agents. Through a high-volume screening program, the pentapeptide derivative PD083176 (1), Cbz-His-Tyr(OBn)-Ser(OBn)-Trp-DAla-NH2, was identified as an inhibitor of rat brain FTase, with an IC50 of 20 nM. Structure-activity relationships were carried out to determine the importance of the side chain and chirality of each residue. This investigation led to a series of potent FTase inhibitors which lack a cysteine residue as found in the ras peptide substrate. The parent compound (1) inhibited the insulin-induced maturation of Xenopus oocytes (concentration: 5 pmol/oocyte), a process which is dependent on the activation of the ras pathway.
Structure‐activity relationship (SAR) studies of the natural pesticidal peptide, tentoxin, are described in the context of similarity between pharmaceutical and agricultural methods of developing biologically active peptidomimetics. Essential residue substitutions that confer biological activity through predictable conformational changes in the peptide backbone and side chain functionalities are discussed. A combination of molecular modelling studies and the biological activity of natural, synthetic and photochemically transformed analogs of tentoxin is utilized to further the understanding of structural and conformational requirements for biological activity.
Phosphorylated tyrosine residues of growth factor receptors that associate with intracellular proteins containing src-homology 2 (SH2) domains are integral components in several signal transduction pathways related to proliferative diseases such as cancer, atherosclerosis, and restenosis. In particular, a phosphorylated pentapeptide [pTyr751-Val-Pro-Met754-Leu (pTyr = phosphotyrosine)] derived from the primary sequence of platelet-derived growth factor-beta (PDGF-beta) receptor blocks the association of the C-terminal SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) to PDGF-beta receptor with an IC50 of 0.445 +/- 0.047 microM. Further evaluation of the structure-activity relationships for pTyr751-Val-Pro-Met-Leu resulted in the design of smaller peptidomimetics with enhanced affinity including Ac-pTyr-Val-Ala-N(C6H13)2 (IC50 = 0.076 +/- 0.010 microM). In addition, the phosphotyrosine residue was replaced with a difluorophosphonate derivative [4-phosphono(difluoromethyl)phenylalanine (CF2Pmp)] which has been shown to be stable to cellular phosphatases. The extracellular administration of either CF2Pmp-Val-Pro-Met-Leu or Ac-CF2Pmp-Val-Pro-Met-NH2 in a whole cell assay resulted in specific inhibition of the PDGF-stimulated association from the C-terminal SH2 domain of the p85 subunit of PI 3-kinase to the PDGF-beta receptor in a dose-dependent manner. These compounds were also effective in inhibiting GLUT4 translocation, c-fos expression, and cell membrane ruffling in single-cell microinjection assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.